ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Gas bubbles  (5)
  • Eubalaena glacialis  (4)
  • North Atlantic Right Whale
  • Overfishing
  • 1
    Publication Date: 2020-04-03
    Description: These UAS video files show 2 individual humpback whales at the moment where seawater covers and enters the blowholes. Videos here are at half the speed of original UAS videos in order to fully capture the fast moment of seawater entering the blowhole. All videos were taken at Stellwagen Bank under NMFS NOAA Permits 17355, 17355-01 and 21371, and with approval from the Woods Hole Oceanographic Institution Institutional Animal Care and Use Committee.
    Keywords: North Atlantic Right Whale ; Humpback Whale ; Unoccupied Aerial Systems ; Respiratory Cycle ; Respiratory Health Geographical Location: Stellwagen Bank National Marine Sanctuary
    Repository Name: Woods Hole Open Access Server
    Type: Moving Image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the Royal Society B : Biological Sciences 279 (2012): 1396-1404, doi:10.1098/rspb.2011.1754.
    Description: Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber–muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.
    Description: Funding for this work was provided by the US Office of Naval Research Award no. N000140811220 and the International Fund for Animal Welfare.
    Keywords: Stranding ; Decompression sickness ; Gas bubbles ; Diving physiology ; Marine mammals
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 279 (2012): 1041-1050, doi:10.1098/rspb.2011.2088.
    Description: Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.
    Description: This paper and the workshop it stemmed from were funded by the Woods Hole Oceanographic Institution Marine Mammal Centre.
    Keywords: Diving physiology ; Marine mammals ; Gas bubbles ; Embolism ; Decompression sickness
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Society for Marine Mammalogy, 2012. Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms. The definitive version was published in Marine Mammal Science 29 (2013): E98–E113, doi:10.1111/j.1748-7692.2012.00591.x.
    Description: A chronically entangled North Atlantic right whale, with consequent emaciation was sedated, disentangled to the extent possible, administered antibiotics, and satellite tag tracked for six subsequent days. It was found dead 11 d after the tag ceased transmission. Chronic constrictive deep rope lacerations and emaciation were found to be the proximate cause of death, which may have ultimately involved shark predation. A broadhead cutter and a spring-loaded knife used for disentanglement were found to induce moderate wounds to the skin and blubber. The telemetry tag, with two barbed shafts partially penetrating the blubber was shed, leaving barbs embedded with localized histological reaction. One of four darts administered shed the barrel, but the needle was found postmortem in the whale with an 80º bend at the blubber-muscle interface. This bend occurred due to epaxial muscle movement relative to the overlying blubber, with resultant necrosis and cavitation of underlying muscle. This suggests that rigid, implanted devices that span the cetacean blubber muscle interface, where the muscle moves relative to the blubber, could have secondary health impacts. Thus we encourage efforts to develop new tag telemetry systems that do not penetrate the subdermal sheath, but still remain attached for many months.
    Description: Funding from NOAA Cooperative Agreement NA09OAR4320129, PO EA133F09SE4792, M. S. Worthington Foundation, North Pond Foundation, Sloan and Hardwick Simmons, and Woods Hole Oceanographic Institution Marine Mammal Center.
    Keywords: Right whale ; Eubalaena glacialis ; Entanglement ; Trauma ; Shark predation ; Tag
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Society for Marine Mammalogy for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 30 (2014): 282–307, doi:10.1111/mms.12042.
    Description: Protracted entanglement in fishing gear often leads to emaciation through reduced mobility and foraging ability, and energy budget depletion from the added drag of towing gear for months or years. We examined changes in kinematics of a tagged entangled North Atlantic right whale (Eg 3911), before, during and after disentanglement on 15 Jan 2011. To calculate the additional drag forces and energetic demand associated with various gear configurations, we towed three sets of gear attached to a load-cell tensiometer at multiple speeds. Tag analyses revealed significant increases in dive depth and duration; ascent, descent and fluke stroke rates; and decreases in root mean square fluke amplitude (a proxy for thrust) following disentanglement. Conservative drag coefficients while entangled in all gear configurations (mean ± SD Cd,e,go = 3.4x10-3 ± 0.0003, Cd,e,gb = 3.7x10-3 ± 0.0003, Cd,e,sl = 3.8x10-3 ± 0.0004) were significantly greater than in the nonentangled case (Cd,n = 3.2x10-3±0.0003; P = 0.0156, 0.0312, 0.0078 respectively). Increases in total power input (including standard metabolism) over the nonentangled condition ranged 1.6%-120.9% for all gear configurations tested; locomotory power requirements increased 60.0%-164.6%. These results highlight significant alteration to swimming patterns, and the magnitude of energy depletion in a chronically entangled whale.
    Description: Funding sources include NOAA Cooperative Agreement NA09OAR4320129, PO EA133F09SE4792, the M.S. Worthington Foundation, the North Pond Foundation, Sloan and Hardwick Simmons.
    Description: 2014-05-21
    Keywords: Disentanglement ; Dtag ; Drag ; Energetics ; Entanglement ; Sedation ; Right whale ; Eubalaena glacialis
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Format: image/jpeg
    Format: application/postscript
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Physiology 3 (2012): 181, doi:10.3389/fphys.2012.00181.
    Description: Recent dogma suggested that marine mammals are not at risk of decompression sickness due to a number of evolutionary adaptations. Several proposed adaptations exist. Lung compression and alveolar collapse that terminate gas-exchange before a depth is reached where supersaturation is significant and bradycardia with peripheral vasoconstriction affecting the distribution, and dynamics of blood and tissue nitrogen levels. Published accounts of gas and fat emboli and dysbaric osteonecrosis in marine mammals and theoretical modeling have challenged this view-point, suggesting that decompression-like symptoms may occur under certain circumstances, contrary to common belief. Diagnostic imaging modalities are invaluable tools for the non-invasive examination of animals for evidence of gas and have been used to demonstrate the presence of incidental decompression-related renal gas accumulations in some stranded cetaceans. Diagnostic imaging has also contributed to the recognition of clinically significant gas accumulations in live and dead cetaceans and pinnipeds. Understanding the appropriate application and limitations of the available imaging modalities is important for accurate interpretation of results. The presence of gas may be asymptomatic and must be interpreted cautiously alongside all other available data including clinical examination, clinical laboratory testing, gas analysis, necropsy examination, and histology results.
    Keywords: Computed tomography ; Ultrasound ; Magnetic resonance imaging ; Cetacean ; Decompression sickness ; Bends ; Pinniped ; Gas bubbles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © Arctic Institute of North America, 2008. This article is posted here by permission of Arctic Institute of North America for personal use, not for redistribution. The definitive version was published in Arctic 61 (2008): 61-75.
    Description: During the 16th and 17th centuries, Basque whalers travelled annually to the Strait of Belle Isle and Gulf of St. Lawrence to hunt whales. The hunting that occurred during this period is of primary significance for the North Atlantic right whale, Eubalaena glacialis (Müller, 1776), because it has been interpreted as the largest human-induced reduction of the western North Atlantic population, with ~12250–21 000 whales killed. It has been frequently reported that the Basques targeted two species in this region: the North Atlantic right whale and the bowhead whale, Balaena mysticetus L., 1758. To evaluate this hypothesis and the relative impact of this period of whaling on both species, we collected samples from 364 whale bones during a comprehensive search of Basque whaling ports from the 16th to the 17th century in the Strait of Belle Isle and Gulf of St. Lawrence. Bones were found and sampled at 10 of the 20 sites investigated. DNA was extracted from a subset (n = 218) of these samples. Analysis of the mitochondrial cytochrome b region identified five whale species. The identification of only a single right whale bone and 203 bowhead whale bones from at least 72 individuals indicates that the bowhead whale was likely the principal target of the hunt. These results imply that this whaling had a much greater impact (in terms of numbers of whales removed) on the bowhead whale population than on the western North Atlantic right whale population.
    Description: Financial support for this work was provided by the Canadian Whale Institute, the Northern Scientific Training Program (NSTP), the Department of Fisheries and Oceans Science Subvention program, the Ocean Life Institute (Woods Hole Oceanographic Institution), and the Natural Sciences and Engineering Research Council of Canada (NSERC).
    Keywords: Balaena mysticetus ; Eubalaena glacialis ; Whaling ; Basque ; Little Ice Age ; Historical population size ; DNA ; Bone ; Cytochrome b
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2014. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Diseases of Aquatic Organisms 111 (2014): 191-205, doi:10.3354/dao02790.
    Description: Decompression sickness (DCS), as clinically diagnosed by reversal of symptoms with recompression, has never been reported in aquatic breath-hold diving vertebrates despite the occurrence of tissue gas tensions sufficient for bubble formation and injury in terrestrial animals. Similarly to diving mammals, sea turtles manage gas exchange and decompression through anatomical, physiological, and behavioral adaptations. In the former group, DCS-like lesions have been observed on necropsies following behavioral disturbance such as high-powered acoustic sources (e.g. active sonar) and in bycaught animals. In sea turtles, in spite of abundant literature on diving physiology and bycatch interference, this is the first report of DCS-like symptoms and lesions. We diagnosed a clinico-pathological condition consistent with DCS in 29 gas-embolized loggerhead sea turtles Caretta caretta from a sample of 67. Fifty-nine were recovered alive and 8 had recently died following bycatch in trawls and gillnets of local fisheries from the east coast of Spain. Gas embolization and distribution in vital organs were evaluated through conventional radiography, computed tomography, and ultrasound. Additionally, positive response following repressurization was clinically observed in 2 live affected turtles. Gas embolism was also observed postmortem in carcasses and tissues as described in cetaceans and human divers. Compositional gas analysis of intravascular bubbles was consistent with DCS. Definitive diagnosis of DCS in sea turtles opens a new era for research in sea turtle diving physiology, conservation, and bycatch impact mitigation, as well as for comparative studies in other air-breathing marine vertebrates and human divers.
    Description: This work was supported with funds from the Pfizer Foundation, the SUAT-VISAVET Center of Complutense University of Madrid, the Oceanográfic of the ‘Ciudad de las Artes y las Ciencias’ of Valencia, and by the research projects CGL 2009/12663, CGL2012-39681, and SolSub C200801000288.
    Keywords: Gas bubbles ; DCS ; Caretta caretta ; Loggerheads ; Bycatch ; Hyperbaric treatment ; Gas embolism ; Breath-hold divers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 7 (2017): 92–106, doi:10.1002/ece3.2615.
    Description: Individuals store energy to balance deficits in natural cycles; however, unnatural events can also lead to unbalanced energy budgets. Entanglement in fishing gear is one example of an unnatural but relatively common circumstance that imposes energetic demands of a similar order of magnitude and duration of life-history events such as migration and pregnancy in large whales. We present two complementary bioenergetic approaches to estimate the energy associated with entanglement in North Atlantic right whales, and compare these estimates to the natural energetic life history of individual whales. Differences in measured blubber thicknesses and estimated blubber volumes between normal and entangled, emaciated whales indicate between 7.4 × 1010 J and 1.2 × 1011 J of energy are consumed during the course to death of a lethal entanglement. Increased thrust power requirements to overcome drag forces suggest that when entangled, whales require 3.95 × 109 to 4.08 × 1010 J more energy to swim. Individuals who died from their entanglements performed significantly more work (energy expenditure × time) than those that survived; entanglement duration is therefore critical in determining whales’ survival. Significant sublethal energetic impacts also occur, especially in reproductive females. Drag from fishing gear contributes up to 8% of the 4-year female reproductive energy budget, delaying time of energetic equilibrium (to restore energy lost by a particular entanglement) for reproduction by months to years. In certain populations, chronic entanglement in fishing gear can be viewed as a costly unnatural life-history stage, rather than a rare or short-term incident.
    Description: Cooperative Institute for the North Atlantic Region (CINAR) Grant Number: NA14OAR4320158; Herrington-Fitch Family Foundation; M.S. Worthington Foundation; North Pond Foundation; Natural Sciences and Engineering Research Council of Canada; MIT Martin Family for Sustainability Fellowship
    Keywords: Bioenergetics ; Blubber ; Capital breeder ; Cetacean ; Emergency life-history stage ; Energy storage ; Eubalaena glacialis ; Marine mammal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Diseases of Aquatic Organisms 127 (2018): 83-95, doi:10.3354/dao03189.
    Description: The challenge of identifying cause of death in discarded bycaught marine mammals stems from a combination of the non-specific nature of the lesions of drowning, the complex physiologic adaptations unique to breath-holding marine mammals, lack of case histories, and the diverse nature of fishing gear. While no pathognomonic lesions are recognized, signs of acute external entanglement, bulging or reddened eyes, recently ingested gastric contents, pulmonary changes, and decompression-associated gas bubbles have been identified in the condition of peracute underwater entrapment (PUE) syndrome in previous studies of marine mammals. We reviewed the gross necropsy and histopathology reports of 36 cetaceans and pinnipeds including 20 directly observed bycaught and 16 live stranded animals that were euthanized between 2005 and 2011 for lesions consistent with PUE. We identified 5 criteria which present at significantly higher rates in bycaught marine mammals: external signs of acute entanglement, red or bulging eyes, recently ingested gastric contents, multi-organ congestion, and disseminated gas bubbles detected grossly during the necropsy and histologically. In contrast, froth in the trachea or primary bronchi, and lung changes (i.e. wet, heavy, froth, edema, congestion, and hemorrhage) were poor indicators of PUE. This is the first study that provides insight into the different published parameters for PUE in bycatch. For regions frequently confronted by stranded marine mammals with non-specific lesions, this could potentially aid in the investigation and quantification of marine fisheries interactions.
    Description: This work was supported by the Nat - ional Oceanic and Atmospheric Administration (NOAA) John H. Prescott Program NA12NMF4390144. The WHOI Marine Mammal Center, Wick and Sloan Simmons, and the University of Las Palmas de Gran Canaria provided postdoctoral funding for Y.B.Q.
    Keywords: Bycatch ; Gas bubbles ; Stranding ; Cetacean ; Pinniped ; Fishery ; Peracute underwater entrapment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...