ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 132-139 
    ISSN: 0006-3592
    Keywords: glycogen ; Escherichia coli ; cell growth ; acetate ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Excessive production of acetate is a problem frequently encountered in aerobic high-cell-density fermentations of Escherichia coli. Here, we have examined genetic alterations resulting in glycogen overproduction as a possible means to direct the flux of carbon away from the acetate pool. Glycogen overaccumulation was achieved either by using a regulatory glgQ mutation or by transforming cells with a plasmid containing the glycogen biosynthesis genes glgC (encoding ADPG pyrophosphorylase) and glgA (encoding glycogen synthase) under their native promoter. Both strategies resulted in an approximately five-fold increase in glycogen levels but had no significant effect on acetate excretion. The glgC and glgA genes were then placed under the control of the isopropyl---D-thiogalactopyranoside (IPTG) inducible tac promoter, and this construct was used to stimulate glycogen production in a mutant defective in acetate biosynthesis due to deletion of the ack (acetate kinase) and pta (phosphotransacetylase) genes. If glycogen overproduction in the ack pta strain was induced during the late log phase, biomass production increased by 15 to 20% relative to uninduced controls. Glycogen overaccumulation had a significant influence on carbon partitioning: The output of carbon dioxide peaked earlier than in the control strain, and the levels of an unusual fermentation byproduct, pyruvate, were reduced. Exogenous pyruvate was metabolized more rapidly, suggesting higher activity of gluconeogenesis or the tricarboxylic acid (TCA) cycle as a result of glycogen overproduction. Potential mechanisms of the observed metabolic alterations are discussed. Our results suggest that ack pta mutants over producing glycogen may be a suitable starting point for constructing E. coli strains with improved characteristics in high-cell-density fermentations. © 1994 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 215-221 
    ISSN: 0006-3592
    Keywords: on-line NMR ; phosphorus-31 NMR ; Escherichia coli ; aerobic and anaerobic metabolism ; intracellular pH ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An experimental system has been constructed which enables on-line measurements of phosphorus-31 (31P) nuclear magnetic resonance (NMR) spectra for growing bacterial suspensions under anaerobic or aerobic conditions. A sample stream from a laboratory bioreactor is circulated to the NMR sample chamber in a gas exchange system which permits maintenance of aerobic conditions for high-cell-density cultures. 31P NMR spectra with resolution comparable with those obtained traditionally using dense, concentrated, nongrowing cell suspensions can be obtained at cell densities above 25 g/L with acquisition times ranging from 14 to 3 minutes which decline as cell density increases. This system has been employed to characterize the changes in intracellular state of a stationary phase culture which is subjected to a transition from aerobic to anaerobic conditions. Both intracellular NTP level and cytoplasmic pH are substantially lower under anaerobic conditions. Also, the system has been employed to observe the response of a growing culture to external addition of acetate. Cells are able to maintain pH difference across the cytoplasmic membrane at extracellular acetate concentrations of 5 and 10 g/L. However, acetate concentrations of 20 g/L cause collapse of the transmembrane ΔpH and sharp reduction of the growth rate of the culture. The experimental configuration described should also permit NMR observations of many other types of microbial cultures and of other nuclei. © 1993 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 583-590 
    ISSN: 0006-3592
    Keywords: 31P NMR ; PTS mutant ; Escherichia coli ; metabolism ; energetics ; glucose uptake system ; galactose symport system ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Modifying substrate uptake systems is a potentially powerful tool in metabolic engineering. This research investigates energetic and metabolic changes brought about by the genetic modification of the glucose uptake and phosphorylation system of Escherichia coli. The engineered strain PPA316, which lacks the E. coli phosphotransferase system (PTS) and uses instead the galactose-proton symport system for glucose uptake, exhibited significantly altered metabolic patterns relative to the parent strain PPA305 which retains PTS activity. Replacement of a PTS uptake system by the galactose-proton symport system is expected to lower the carbon flux to pyruvate in both aerobic and anaerobic cultivations. The extra energy cost in substrate uptake for the non-PTS strain PPA 316 had a greater effect on anaerobic specific growth rate, which was reduced by a factor of five relative to PPA 305, while PPA 316 reached a specific growth rate of 60% of that of the PTS strain under aerobic conditions. The maximal cell densities obtained with PPA 316 were approximately 8% higher than those of the PTS strain under aerobic conditions and 14% lower under anaerobic conditions. In vivo NMR results showed that the non-PTS strain possesses a dramatically different intracellular environment, as evidenced by lower levels of total sugar phosphate, NAD(H), nucleoside triphosphates and phosphoenolpyruvate, and higher levels of nucleoside diphosphates. The sugar phosphate compositions, as measured by extract NMR, were considerably different between these two strains. Data suggest that limitations in the rates of steps catalyzed by glucokinase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, and pyruvate kinase may be responsible for the low overall rate of glucose metabolism in PPA316. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 583-590, 1997.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 386-391 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; protein production ; secretion ; plasmid stability ; fed-batch ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Periplasmic secretion of overexpressed Bacillus stearothermophilus α-amylase was analyzed in batch and fed-batch cultivations of Escherichia coli MG1655:pCSS4-p and the mutant strain CWML2:pCSS4-p. Under all conditions investigated, growth and product formation of MG1655:pCSS4-p were severely impaired by heterologous protein expression and/or processing, while E. coli CWML2:pCSS4-p was found to be more robust and to accumulate 2- to 3-fold higher maximum α-amylase levels. While this strain is itself potentially interesting for applications, its properties also illustrate the potential of the selection procedure that was employed to obtain it from its progenitor MG1655 (Weikert, C., Sauer, U., Bailey, J. E., 1997. Microbiol. 143: 1567-1574. Application of this procedure to existing industrial strains may lead to significantly improved process organisms. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:386-391, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...