ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Epistasis Cytoskeleton  (1)
  • Mutant  (1)
  • 1
    ISSN: 1432-0983
    Keywords: Yeast ; Mutant ; Triethyltin chloride ; Protein phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Three mutants of Saccharomyces cerevisiae resistant to triethyltin (an inhibitor of mitochondrial ATPase) on non-fermentative media, and non-resistant to this drug on fermentative media, were isolated and named TTR1, TTR2 and TTR3. Apart from triethyltin resistance, these mutants show the following common characteristics: (1) Increased intracellular cytochrome c concentration. (2) Increased respiration rate. (3) Decreased growth yield. (4) Increased growth sensitivity to several drugs inhibiting oxidative phosphorylation: namely, CCCP (permeabilizing inner mitochondrial membrane to protons), valinomycin (permeabilizing inner mitochondrial membrane to potassium) and oligomycin (inhibitor of mitochondrial ATPase). (5) Increased sensitivity to carbon source starvation. For each mutant, these characteristics appeared to be due to a single pleiotropic nuclear mutation. Mutation TTR1 causes additional phenotypic characteristics which do not appear in mutants TTR2 and TTR3: (1) Pinkish coloration of colonies which is more pronounced after a long growth period. (2) Inability of the cells to store glycogen. (3) Growth defect of the cells on a galactose-containing medium. (4) Inability of a diploid homozygote mutant strain to sporulate. All these phenotypic characteristics have already been described in yeast mutants deregulated in cAMP-dependant protein phosphorylation. Crossing of a strain bearing the TTR1 mutation with a strain mutated in the adenylate cyclase structural gene suggested that the TTR1 phenotype is due to a modification in regulation of cAPK by cAMP, making cell multiplication possible without intracellular cAMP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 27 (1995), S. 213-216 
    ISSN: 1432-0983
    Keywords: Bud site ; RVS genes ; Epistasis Cytoskeleton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells of Saccharomyces cerevisiae can choose a bud site in one of two different spatial patterns (axial or bipolar) determined by their mating type. Genes important for bud-site selection have been identified and a linear model describing the hierarchy of these genes was proposed. We have uncovered a new class of genes which is required only for the bipolar pattern. The phenotype of the corresponding mutants coupled with epistasis experiments with some budding mutants already described suggest the existence of specific genes for the bipolar pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...