ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-06-09
    Description: In January and March 1992, DC-8-measured stratospheric particle optical depth spectra, tau(sub p)(lambda), peaked broadly at midvisible or longer wavelengths. At mid-to-high northern latitudes outside the vortex, tau(sub p)(526 nm) nm) above about 11 km was as large as 0.22 in both January and March, reflecting continued Pinatubo volcanic influence. In both months, in-vortex tau(sub p)(lambda) above 11 km was smaller than outside-vortex values by a factor of two or more, and in January a strong anticorrelation was observed between tau(sub p)(lambda) and HF column content (an indicator of vortex penetration). In late January at 18-20S, near the edge of the southern subtropical jet, tau(sub p)(526 nm) above 12 km was only about 0.07-0.09, with a flatter spectral shape than northern mid- to high-latitude measurements in both January and March. Occasional high-latitude vertical profiles indicate 6-11-km slab optical depths, Delta tau(sub p)(526 nm), of 0.05 to 0.1, which should be added to the above-11-km values to yield values above 6 km.
    Keywords: Environment Pollution
    Type: Airborne Arctic Stratospheric Expedition 2 Air Parcel Trajectories (ISSN 0094-8534); Volume 20; No. 22; 2571-2574; NASA-TM-112699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-06-09
    Description: During the Airborne Arctic Stratospheric Expedition II (AASE II), September 1991 through March 1992, in situ measurements of reactive nitrogen (NO(y)) and N2O were made in the Northern Hemisphere lower stratosphere. We present an analysis of this new data and compare it with results from similar data taken during AASE in the winter of 1989. In the Northern Hemisphere there is a consistent linear correlation of N2O and NO(y) which shows no interannual variation. Cases of departure from a linear correlation are examined and classified as being due to denitrification (NO(y) loss) or sampling air from a region where the photochemical lifetime of NO(y) is decreased. The latter case was observed for the first time in the winter of 1992.
    Keywords: Environment Pollution
    Type: Airborne Arctic Stratospheric Expedition 2 Air Parcel Trajectories (ISSN 0094-8534); Volume 20; No. 22; 2531-2534; NASA-TM-112699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-23
    Description: To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery of NH O3.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: During the winter of 1999-2000, the Sage III Ozone Loss and Validation Experiment (SOLVE) field experiment took place in Kiruna, Sweden. The purpose of SOLVE was to examine ozone depletion mechanisms in the Arctic stratosphere (from about 10 to 50 km altitude) during the winter and early spring, when a band of strong winds (the 'polar vortex') circle the pole. Measurements of stratospheric ozone were made by several different kinds of instruments in different meteorological situations. We analyzed these data using the 'quasi-conservative coordinate mapping' technique, in which the measurements are analyzed in terms of meteorological properties ('potential temperature' and 'potential vorticity') which tend not to change very much over a few days. This technique reduces or removes the changes that are associated with the polar vortex moving around. Over longer time periods, potential temperature and potential vorticity change as air cools and descends within the polar vortex. We account for these changes by calculating the trajectories of air parcels, and this enables us to extend the analysis over a ten-week period from January 10 to March 17, 2000. Using data from the NASA ER-2 aircraft, from the DIAL and AROTEL laser sounders on the NASA DC-8 aircraft, and balloon-borne ozonesondes, our analysis reveals changes in ozone which, because we have removed the effects of polar vortex motion and the descending air, indicate chemical destruction of ozone in early 2000. We find a peak decline rate of approximately 0.03 ppmv/day near 470 K of potential temperature (near 20 km) in mid-January which sinks in altitude to around 440 K (near 18 km) in mid-March.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-29
    Description: A high-altitude aircraft flight on April 18, 1997 detected an enormous aerosol cloud at 20 km altitude near California (37 N). Not visually observed, the cloud had high concentrations of soot and sulfate aerosol, and was over 180 km in horizontal extent. The cloud was probably a large hydrocarbon fueled vehicle, most likely from rocket motors burning liquid oxygen and kerosene. One of two Russian Soyuz rockets could have produced the cloud: a launch from the Baikonur Cosmodrome, Kazakhstan on April 6; or from Plesetsk, Russia on April 9. Parcel trajectories and long-lived trace gas concentrations suggest the Baikonur launch as the cloud source. Cloud trajectories do not trace the Soyuz plume from Asia to North America, illustrating the uncertainties of point-to-point trajectories. This cloud encounter is the only stratospheric measurement of a hydrocarbon fuel powered rocket.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-29
    Description: The processes which contribute to the ozone evolution in the high latitude northern lower stratosphere are evaluated using a three dimensional model simulation and ozone observations. The model uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System. The simulation results are compared with ozone observations from three platforms: the differential absorption lidar (DIAL) which was flown on the NASA DC-8 as part of the Vortex Ozone Transport Experiment; the Microwave Limb Sounder (MLS); the Polar Ozone and Aerosol Measurement (POAM II) solar occultation instrument. Time series for the different data sets are consistent with each other, and diverge from model time series during December and January. The model ozone in December and January is shown to be much less sensitive to the model photochemistry than to the model vertical transport, which depends on the model vertical motion as well as the model vertical gradient. We evaluate the dependence of model ozone evolution on the model ozone gradient by comparing simulations with different initial conditions for ozone. The modeled ozone throughout December and January most closely resembles observed ozone when the vertical profiles between 12 and 20 km within the polar vortex closely match December DIAL observations. We make a quantitative estimate of the uncertainty in the vertical advection using diabatic trajectory calculations. The net transport uncertainty is significant, and should be accounted for when comparing observations with model ozone. The observed and modeled ozone time series during December and January are consistent when these transport uncertainties are taken into account.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-29
    Description: Haze and air pollution includes many chemicals that together form small particles suspended in the air called aerosols. One of the main ingredients found to affect climate and human health is Black Carbon. Black particles emitted from engines that do not burn the fuel completely, e.g. old trucks. Black carbon absorption of sunlight emerges as one of the key components of man-made forcing of climate. However, global characterization of black carbon emissions, distribution and pathways in which it can affect the amount of solar radiation absorbed by the atmosphere is very uncertain. A new method is proposed to measure sunlight absorption by fine aerosol particles containing black carbon over the ocean glint from a satellite mission designed for this purpose. The satellite will scan the same spot over the ocean in the glint plane and a plane 40 degrees off-glint a minute apart, collecting measurements of the reflected light across the solar spectrum. First the dark ocean off the glint is used to derive aerosol properties. Then the black carbon absorption is derived prop the attenuation of the bright glint by the aerosol layer. Such measurements if realized in a proposed future mission - COBRA are expected to produce global monthly climatology of black carbon absorption with high accuracy (110 to 15%) that can show their effect on climate.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: Smoke and pollutants from Canadian forest fires were transported over the northeastern United States in July 2002. Lidar observations at the NASA Goddard Space Flight Center show the smoke from these fires arriving in an elevated plume that was subsequently mixed to the surface. Trajectory and three-dimensional model calculations confirm the origin of the smoke and show that it mixed to the surface after it was intercepted by the turbulent planetary boundary layer. Modeled smoke optical properties agreed well with aircraft and remote sensing observations provided coagulation of smoke particles was accounted for in the model. Our results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: Using Aura MLS data we have identified the stratospheric tape recorder in carbon monoxide (CO). Unlike the water vapor tape recorder, which is controlled by upper troposphere processes, the CO tape recorder is linked to seasonal biomass burning. Since CO has a lifetime of only a few months, the CO tape recorder barely extends above 20 km. The tape head for CO appears to be close to 360K near the same location as the water vapor tape head [Read et al, 20041. Both tape heads are below the equatorial cold point tropopause but above the base of the tropical tropopause layer. The tape recorder signal becomes more distinct from 360K to 380K suggesting that convective detrainment of plays a decreasingly important role with altitude. The Global Modeling Initiative chemical transport model forced by the climatology of biomass burning reproduces the CO tape recorder.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...