ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Environment Pollution; Earth Resources and Remote Sensing  (1)
  • ecosystem carbon balance  (1)
  • 1
    ISSN: 1573-5036
    Keywords: belowground respiration ; ecosystem carbon balance ; enhanced atmospheric [CO2] ; root symbionts ; root turnover ; soil carbon accumulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We undertake a synthesis of the most relevant results from the presentations at the meeting “Plant-Soil Carbon Below-Ground: The Effects of Elevated CO2” (Oxford-UK, September 1995), many of which are published in this Special Issue. Below-ground responses to elevated [CO2] are important because the capacity of soils for long-term carbon sequestration. We draw the following conclusions: (i) several ecosystems exposed to elevated [CO2] showed sustained increased CO2 uptake at the plot level for many years. A few systems, however, showed complete down-regulation of net CO2 uptake after several years of elevated [CO2] exposure; (ii) under elevated [CO2], a greater proportion of fixed carbon is generally allocated below-ground, potentially increasing the capacity of below-ground sinks; and (iii) some of the increased capacity of these sinks may lead to increased long-term soil carbon sequestration, although strong evidence is still lacking. We highlight the need for more soil studies to be undertaken within ongoing ecosystem-level experiments, and suggest that while some key experiments already established should be maintained to allow long term effects and feedbacks to take place, more research effort should be directed to mechanisms of soil organic matter stabilization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Methane is an important greenhouse gas, responsible for about 20 of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios which differ in fossil fuel and microbial emissions to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.
    Keywords: Environment Pollution; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN11450 , Nature Geoscience (ISSN 1752-0894) (e-ISSN 1752-0908); 6; 813-823
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...