ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Environment  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geology 36 (1998), S. 137-149 
    ISSN: 1432-0495
    Keywords: Key words Patina ; Gypsum ; Calcite ; Oxalate ; Marble ; Granite ; Limestone ; Mediterranean ; Environment ; Climatic change
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  This paper analyzes – chemically, mineralogically, and petrolographically – the patinas developed on several Mediterranean monuments made with different stones (siliceous and carbonatic) in order to establish their origin and their evolution under the present environmental conditions, and to evaluate the environmental parameters controling their development. Most of the patinas show a common sequence of layers, which, from the outer to the inner zone, are: (1) present bioactivity and/or biological remains, (2) gypsum-rich patina, and (3) calcitic brown to orange patina. Each one may exhibit different fabrics (from micritic to stromatolitic) and may be more or less continuous and homogeneous. The main mineral components are calcite and gypsum, but Ca-oxalates and Ca-phosphates have also been found associated to biological structures, as well as quartz and clays. The different fabrics and textures have been interpreted as consequence of changes in the environmental conditions which seem to be related to the biological activity, facilitating the growth of different organisms and leading to the development of a deposit with distinct characteristics (fabric, texture, porosity, etc.). The gypsum-rich patina has been interpreted as a sulphation of the underlying calcitic layer by the action of atmospheric pollutants or as dry or wet deposition from the atmospheric dust. The mineralogy and texture of the patina is independent of the nature of the underlying rock and only in few cases a micritization process has been observed as interaction between patina and rock. Recently, the penetration of endolithic microflora produced drillings and the development of a fissuration system parallel to the surface, and thus the detachment of the crust from the rock and even flackening of the rock itself has been observed. Consequently, under the present climatic conditions in the Mediterranean basin, erosion is a more active process than deposition, and the crusts and patinas show a tendency to disappear from the surface of the monuments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geology 27 (1996), S. 263-269 
    ISSN: 1432-0495
    Keywords: Stone decay ; Black crusts ; Hydric expansion ; Salt crystallization ; Limestone ; Mediterranean ; Environment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The extant remains of the Roman monuments of Tarragona, Spain are made of different types of Miocenic rocks from the quarries surrounding the city, which vary from calcarenite to bioclastic limestones, showing different degrees of dolomitization, depending on their diagenetic evolution. The decay of these monuments is highly dependent on the mineralogy and the fabric of the stone as well as on the environmental conditions to which the monument subjected. As a consequence, different forms of decay are observed on these monuments, namely, granular disintegration, differential erosion between sparitic and micritic areas of the rock, and development of black crust and orange patinas, some of them attributed to a sulfation process. A number of processes have been established as being responsible for the decay forms observed: sulfation on sheltered areas of the building in the urban environment; differential dilatation because of the NaCl of the marine spray that crystallizes inside the porosity; hydric and thermal expansion of the stone, both related to the amount and crystallinity of the clay minerals forming the rock matrix; and biocolonization on the stone surface. An empirical model is proposed to explain the decay forms studied in relation to these factors (rock and environment).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geology 27 (1996), S. 263-269 
    ISSN: 1432-0495
    Keywords: Key words: Stone decay ; Black crusts ; Hydric expansion ; Salt crystillization ; Limestone ; Mediterranean ; Environment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract . The extent remains of the Roman monuments of Tarragona, Spain are maid of different types of Miocenic rocks from the quarries surrounding the city, which vary from the calcarenite to bioclastic limestones, showing different degrees of dolomitization, depending on their diagenetic evolution. The decay of these monuments is highly dependent on the mineralogy and the fabric of the stone as well as on the environmental conditions to which the monument subjected. As a consequence, different forms of decay are observed on these monuments, namely, granular disintegration, differential erosion between sparitic and micritic areas of the rock, and development of black crust and orange patinas, some of them attributed to a sulfation process. A number of processes have been established as being responsible for the decay forms observed: sulfation on sheltered areas of the building in the urban environment; differential dilatation because of the NaCl of the marine spray that crystallizes inside the porosity; hybric and thermal expansion of the stone, both related to the amount and crystallinity of the clay minerals forming the rock matrix; and biocolonization on the stone surface. An empirical model is proposed to explain the decay forms studied in relation to these factors (rock and environment).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...