ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-13
    Description: The water content of the martian mantle is controversial. In particular, the role of water in the petrogenesis of the shergottites has been much debated. Although the shergottites, collectively, contain very little water [e.g., 1,2], some experiments have been interpreted to show that percent levels of water are required for the petrogenesis of shergottites such as Shergotty and Zagami [3]. In this latter interpretation, the general paucity of water in the shergottites and their constituent minerals is attributed to late-stage degassing. Y980459 (Y98) is a very primitive, perhaps even parental, martian basalt, with a one-bar liquidus temperature of approx.1400 C. Olivine is the liquidus phase, and olivine core compositions are in equilibrium with the bulk rock [e.g., 4]. Petrogenetically, therefore, Y98 has had a rather simple history and can potentially help constrain the role of water in martian igneous processes. In particular, once trapped, melt inclusions should not be affected by subsequent degassing.
    Keywords: Geophysics
    Type: JSC-CN-25797 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: Magmatic degassing of volatile elements affects the climate and near-surface environment of Mars. Telescopic and meteorite studies have revealed that the Martian atmosphere and near-surface materials have D/H ratios ~5-6 times terrestrial values [e.g., 1, 2]. Such high D/H ratios are interpreted to result from the preferential loss of H relative to heavier D from the Martian atmosphere, assuming that the original Martian water inventory had a D/H ratio similar to terrestrial values and to H in primitive meteorites [e.g., 1, 3]. However, the primordial Martian D/H ratio has, until now, not been well constrained. The uncertainty over the Martian primordial D/H ratio has arisen both from the scarcity of primitive Martian meteorites and as a result of contamination by terrestrial and, perhaps, Martian surface waters that obscure the signature of the Martian mantle. This study reports a comprehensive dataset of magmatic volatiles and D/H ratios in Martian primary magmas based on low-contamination, in situ ion microprobe analyses of olivine-hosted melt inclusions from both depleted [Yamato 980459 (Y98)] and enriched [Larkman Nunatak 06319 (LAR06)] Martian basaltic meteorites. Analyses of these primitive melts provide definitive evidence that the Martian mantle has retained a primordial D/H ratio and that young Martian basalts have assimilated old Martian crust.
    Keywords: Geophysics
    Type: JSC-CN-25640 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-19
    Description: Up until recently the orthopyroxenite ALH 84001, a singleton martian meteorite type, was the only sample that did not fit within the common SNC types. However with the discovery of the unique basaltic breccia NWA 7034 pairing group [1] the diversity of martian meteorites beyond SNC types was expanded, and now with Northwest Africa (NWA) 8159, and its possible pairing NWA 7635 [2], the diversiy is expanded further with a third unique non-SNC meteorite type. The existence of meteorite types beyond the narrow range seen in SNCs is what might be expected from a random cratering sampling of a geologically long-lived and complex planet such as Mars.
    Keywords: Geophysics
    Type: JSC-CN-31533 , Meeting of the Meteoritical Society; Sep 08, 2014 - Sep 13, 2014; Casablanca; Morocco
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: Recent remote sensing studies [e.g., 1-3] indicate that several un-sampled regions of the Moon have significantly higher concentrations of silicic material (also high in [K], [U], and [Th]) than sampled regions. Within these areas are morphological features that are best explained by the existence of chemically evolved volcanic rocks. Observations of silicic domes [e.g., 1-5] suggest that sizable networks of silicic melt were present during crust-formation. Because of these recent findings there is a renewed interest in the petrogenesis of lunar, felsic igneous rocks. Specific questions are: (1) when were these magmas generated?, and (2) what was the source material? The two main hypotheses for generating silicic melts on Earth are fractional crystallization or partial melting of preexisting crust. On the Moon silicic melts are thought to have been generated during extreme fractional crystallization involving end-stage silicate liquid immiscibility (SLI) [e.g. 6, 7]. However, SLI cannot account for the production of significant volumes of silicic melt and its wide distribution, as reported by the remote global surveys [1, 2, 3]. In addition, experimental and natural products of SLI show that U and Th, which are abundant in the lunar granites and seen in the remote sensing data of the domes, are preferentially partitioned into the depolymerized ferrobasaltic magma and not the silicic portion [8, 9]. If SLI is not the mechanism that generated silicic magmas on the Moon then alternative processes such as fractional crystallization (only crystal-liquid separation) or partial melting should be considered as viable possibilities to be tested.
    Keywords: Geophysics
    Type: JSC-CN-28074 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: The Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks. These carbonate disks are believed to have precipitated 3.9 Ga ago at beginning of the Noachian epoch on Mars during which both the oldest extant Martian surfaces were formed, and perhaps the earliest global oceans. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of mag- netite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. For example, the magnetites might have already been present in the aqueous fluids from which the carbonates were believed to have been deposited. We have sought to resolve between these hypotheses through the detailed characterized of the compo- sitional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded. Extensive use of focused ion beam milling techniques has been utilized for sample preparation. We then compared our observations with those from experimental thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios. We conclude that the vast majority of the nanocrystal magnetites present in the car- bonate disks could not have formed by any of the currently proposed thermal decomposition scenarios. Instead, we find there is considerable evidence in support of an alternative allochthonous origin for the magnetite unrelated to any shock or thermal processing of the carbonates.
    Keywords: Geophysics
    Type: JSC-CN-19246 , Geochimica et Cosmochimica Acta (ISSN 0016-7037); 73; 21; 6631-6677
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...