ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-05
    Description: DNA methylation is essential for normal development and has been implicated in many pathologies including cancer. Our knowledge about the genome-wide distribution of DNA methylation, how it changes during cellular differentiation and how it relates to histone methylation and other chromatin modifications in mammals remains limited. Here we report the generation and analysis of genome-scale DNA methylation profiles at nucleotide resolution in mammalian cells. Using high-throughput reduced representation bisulphite sequencing and single-molecule-based sequencing, we generated DNA methylation maps covering most CpG islands, and a representative sampling of conserved non-coding elements, transposons and other genomic features, for mouse embryonic stem cells, embryonic-stem-cell-derived and primary neural cells, and eight other primary tissues. Several key findings emerge from the data. First, DNA methylation patterns are better correlated with histone methylation patterns than with the underlying genome sequence context. Second, methylation of CpGs are dynamic epigenetic marks that undergo extensive changes during cellular differentiation, particularly in regulatory regions outside of core promoters. Third, analysis of embryonic-stem-cell-derived and primary cells reveals that 'weak' CpG islands associated with a specific set of developmentally regulated genes undergo aberrant hypermethylation during extended proliferation in vitro, in a pattern reminiscent of that reported in some primary tumours. More generally, the results establish reduced representation bisulphite sequencing as a powerful technology for epigenetic profiling of cell populations relevant to developmental biology, cancer and regenerative medicine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896277/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896277/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meissner, Alexander -- Mikkelsen, Tarjei S -- Gu, Hongcang -- Wernig, Marius -- Hanna, Jacob -- Sivachenko, Andrey -- Zhang, Xiaolan -- Bernstein, Bradley E -- Nusbaum, Chad -- Jaffe, David B -- Gnirke, Andreas -- Jaenisch, Rudolf -- Lander, Eric S -- R01 HG004401/HG/NHGRI NIH HHS/ -- R01 HG004401-02/HG/NHGRI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-04/HG/NHGRI NIH HHS/ -- U54 HG003067-06/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Aug 7;454(7205):766-70. doi: 10.1038/nature07107. Epub 2008 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18600261" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cells, Cultured ; Conserved Sequence ; CpG Islands/genetics ; *DNA Methylation ; Embryonic Stem Cells/cytology/metabolism ; Fibroblasts/cytology ; Genome/genetics ; *Genomics ; Histones/genetics/metabolism ; Male ; Mice ; Neurons/cytology ; Pluripotent Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-20
    Description: Pluripotent stem cells provide a powerful system to dissect the underlying molecular dynamics that regulate cell fate changes during mammalian development. Here we report the integrative analysis of genome-wide binding data for 38 transcription factors with extensive epigenome and transcriptional data across the differentiation of human embryonic stem cells to the three germ layers. We describe core regulatory dynamics and show the lineage-specific behaviour of selected factors. In addition to the orchestrated remodelling of the chromatin landscape, we find that the binding of several transcription factors is strongly associated with specific loss of DNA methylation in one germ layer, and in many cases a reciprocal gain in the other layers. Taken together, our work shows context-dependent rewiring of transcription factor binding, downstream signalling effectors, and the epigenome during human embryonic stem cell differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499331/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499331/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsankov, Alexander M -- Gu, Hongcang -- Akopian, Veronika -- Ziller, Michael J -- Donaghey, Julie -- Amit, Ido -- Gnirke, Andreas -- Meissner, Alexander -- 5F32DK095537/DK/NIDDK NIH HHS/ -- P01 GM099117/GM/NIGMS NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- P50HG006193/HG/NHGRI NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):344-9. doi: 10.1038/nature14233.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Immunology, Weizmann Institute, Rehovot, 76100 Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693565" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Differentiation/genetics ; Cell Lineage ; Chromatin/chemistry/genetics/metabolism ; Chromatin Assembly and Disassembly/genetics ; DNA Methylation ; Embryonic Stem Cells/*cytology/*metabolism ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/genetics ; Epigenomics ; Genome, Human/genetics ; Germ Layers/cytology/metabolism ; Histones/chemistry/metabolism ; Humans ; Protein Binding ; Signal Transduction ; Transcription Factors/*metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-09
    Description: DNA methylation is a defining feature of mammalian cellular identity and is essential for normal development. Most cell types, except germ cells and pre-implantation embryos, display relatively stable DNA methylation patterns, with 70-80% of all CpGs being methylated. Despite recent advances, we still have a limited understanding of when, where and how many CpGs participate in genomic regulation. Here we report the in-depth analysis of 42 whole-genome bisulphite sequencing data sets across 30 diverse human cell and tissue types. We observe dynamic regulation for only 21.8% of autosomal CpGs within a normal developmental context, most of which are distal to transcription start sites. These dynamic CpGs co-localize with gene regulatory elements, particularly enhancers and transcription-factor-binding sites, which allow identification of key lineage-specific regulators. In addition, differentially methylated regions (DMRs) often contain single nucleotide polymorphisms associated with cell-type-related diseases as determined by genome-wide association studies. The results also highlight the general inefficiency of whole-genome bisulphite sequencing, as 70-80% of the sequencing reads across these data sets provided little or no relevant information about CpG methylation. To demonstrate further the utility of our DMR set, we use it to classify unknown samples and identify representative signature regions that recapitulate major DNA methylation dynamics. In summary, although in theory every CpG can change its methylation state, our results suggest that only a fraction does so as part of coordinated regulatory programs. Therefore, our selected DMRs can serve as a starting point to guide new, more effective reduced representation approaches to capture the most informative fraction of CpGs, as well as further pinpoint putative regulatory elements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821869/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821869/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ziller, Michael J -- Gu, Hongcang -- Muller, Fabian -- Donaghey, Julie -- Tsai, Linus T-Y -- Kohlbacher, Oliver -- De Jager, Philip L -- Rosen, Evan D -- Bennett, David A -- Bernstein, Bradley E -- Gnirke, Andreas -- Meissner, Alexander -- ES017690/ES/NIEHS NIH HHS/ -- P01 GM099117/GM/NIGMS NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- P30AG10161/AG/NIA NIH HHS/ -- R01 AG017917/AG/NIA NIH HHS/ -- R01AG15819/AG/NIA NIH HHS/ -- R01AG17917/AG/NIA NIH HHS/ -- R01AG36042/AG/NIA NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- England -- Nature. 2013 Aug 22;500(7463):477-81. doi: 10.1038/nature12433. Epub 2013 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23925113" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; CpG Islands/genetics ; *DNA Methylation ; Enhancer Elements, Genetic/genetics ; Genome, Human/*genetics ; Genome-Wide Association Study ; Humans ; Organ Specificity ; Polymorphism, Single Nucleotide/genetics ; Sequence Analysis, DNA ; Sulfites/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-30
    Description: DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methylcytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and so far no base-resolution maps exist to support and refine it. Here we generate genome-scale DNA methylation maps in mouse gametes and from the zygote through post-implantation. We find that the oocyte already exhibits global hypomethylation, particularly at specific families of long interspersed element 1 and long terminal repeat retroelements, which are disparately methylated between gametes and have lower methylation values in the zygote than in sperm. Surprisingly, the oocyte contributes a unique set of differentially methylated regions (DMRs)--including many CpG island promoters--that are maintained in the early embryo but are lost upon specification and absent from somatic cells. In contrast, sperm-contributed DMRs are largely intergenic and become hypermethylated after the blastocyst stage. Our data provide a genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331945/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331945/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Zachary D -- Chan, Michelle M -- Mikkelsen, Tarjei S -- Gu, Hongcang -- Gnirke, Andreas -- Regev, Aviv -- Meissner, Alexander -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003958/OD/NIH HHS/ -- 5RC1AA019317/AA/NIAAA NIH HHS/ -- DP1 CA174427/CA/NCI NIH HHS/ -- DP1 OD003958/OD/NIH HHS/ -- DP1 OD003958-04/OD/NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- P50 HG006193-01/HG/NHGRI NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 28;484(7394):339-44. doi: 10.1038/nature10960.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22456710" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CpG Islands/genetics ; *DNA Methylation/genetics ; Embryo, Mammalian/*embryology/*metabolism ; Embryonic Development/*genetics ; Female ; Fertilization/genetics ; Genome/genetics ; Long Interspersed Nucleotide Elements/genetics ; Male ; Mice ; Oocytes/metabolism ; Spermatozoa/metabolism ; Terminal Repeat Sequences/genetics ; Zygote/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1994-07-01
    Description: Deletion of the promoter and the first exon of the DNA polymerase beta gene (pol beta) in the mouse germ line results in a lethal phenotype. With the use of the bacteriophage-derived, site-specific recombinase Cre in a transgenic approach, the same mutation can be selectively introduced into a particular cellular compartment-in this case, T cells. The impact of the mutation on those cells can then be analyzed because the mutant animals are viable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, H -- Marth, J D -- Orban, P C -- Mossmann, H -- Rajewsky, K -- New York, N.Y. -- Science. 1994 Jul 1;265(5168):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genetics, University of Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8016642" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA Nucleotidyltransferases/genetics/metabolism ; DNA Polymerase I/*genetics/metabolism ; Female ; *Gene Deletion ; Genetic Engineering/*methods ; Homozygote ; *Integrases ; Male ; Mice ; Mice, Knockout ; Mice, Transgenic ; Mutation ; Recombination, Genetic ; Stem Cells/enzymology ; T-Lymphocytes/*enzymology ; Transfection ; *Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...