ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (6)
  • Spacecraft Design, Testing and Performance  (6)
  • Engraulis ringens  (3)
Collection
Keywords
Years
  • 11
    Publication Date: 2019-12-20
    Description: Europa, the smallest of Jupiters Galilean moons, is thought to harbor a vast liquid water ocean beneath its icy crust, making it one of the most scientifically intriguing targets for a robotic surface sampling mission in our Solar System. However, autonomously landing a spacecraft safely and precisely on Europa poses unique challenges, such as very little existing high-resolution reconnaissance imagery, a surface expected to be very rough and hazardous over a wide range of scales, an extremely intense ionizing radiation environment, and very limited lander resources for mass and volume. To address these challenges, we propose a novel Intelligent Landing System (ILS) combining four Guidance, Navigation & Control (GN&C) sensing functions velocimetry, altimetry, map-relative localization, and hazard detection that would together enable safe and precise landing on Europas surface. The ILS is a smart sensor system, combining an inertial measurement unit (IMU), a monocular, passive-optical camera, and a light detection and ranging (Li-DAR) sensor with dedicated computing resources as well as an onboard 3D terrain map. The ILS leverages more than a decade of technology development from programs such as the Lander Vision System, currently baselined on the Mars 2020 mission. This paper provides a detailed description of the proposed ILS architecture and concept of operations, as well as select preliminary simulation results to assess performance and robustness.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JPL-CL-CL#17-0517 , Annual Guidance and Control Conference; Feb 02, 2017 - Feb 08, 2017; Breckenridge, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than prior missions to Mars, MSL will offer access to regions of Mars that have been previously unreachable. The MSL EDL sequence is a result of a more stringent requirement set than any of its predecessors. Notable among these requirements is landing a 900 kg rover in a landing ellipse much smaller than that of any previous Mars lander. In meeting these requirements, MSL is extending the limits of the EDL technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Thus, there are many design challenges that must be solved for the mission to be successful. Several pieces of the EDL design are technological firsts, such as guided entry and precision landing on another planet, as well as the entire Sky Crane maneuver. This paper discusses the MSL EDL architecture and discusses some of the challenges faced in delivering an unprecedented rover payload to the surface of Mars.
    Keywords: Spacecraft Design, Testing and Performance
    Type: International Planetary Probe Workshop; Jun 12, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: International Planetary Probe (IPPW-8) Workshop; Jun 06, 2011 - Jun 10, 2011; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: International ESA Conference on Guidance and Navigation Control Systems; Jun 05, 2011 - Jun 10, 2011; Carlsbad; Czechoslovakia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of Mars. This paper describes the current MSL EDL system performance as predicted by end-to-end EDL simulations, highlights the sensitivity of this baseline performance to several key environmental assumptions, and discusses some of the challenges faced in delivering such an unprecedented rover payload to the surface of Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: LF99-3989 , Paper No. 1467 , 2007 IEEE Aerospace Conference; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...