ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 15 (1980), S. 1363-1380 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A computational algorithm, based on the combined use of mixed finite elements and classical Rayleigh-Ritz approximation, is presented for predicting the nonlinear static response of structures; The fundamental unknowns consist of nodal displacements and forces (or stresses) and the governing nonlinear finite element equations consist of both the constitutive relations and equilibrium equations of the discretized structure. The vector of nodal displacements and forces (or stresses) is expressed as a linear combination of a small number of global approximation functions (or basis vectors), and a Rayleigh-Ritz technique is used to approximate the finite element equations by a reduced system of nonlinear equations. The global approximation functions (or basis vectors) are chosen to be those commonly used in static perturbation technique; namely a nonlinear solution and a number of its path derivatives. These global functions are generated by using the finite element equations of the discretized structure.The potential of the global-local mixed approach and its advantages over global-local displacement finite element methods are discussed. Also, the high accuracy and effectiveness of the proposed approach are demonstrated by means of numerical examples.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 19 (1983), S. 1783-1803 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A multiple-parameter reduced basis technique and a problem-adaptive computational algorithm are presented for the bifurcation and post-buckling analyses of composite plates subjected to combined loadings. The computational algorithm can be conveniently divided into three distinct stages. The first stage is that of determining the stability boundary. The plate is discretized by using displacement finite element models and the analysis region is reduced by exploiting the special symmetries exhibited by the response of the plate. The vector of unknown nodal displacements is expressed as a linear combination of a small number of path derivatives (derivatives of the nodal displacements with respect to path parameters), and a Rayleigh-Ritz technique is used to approximate the finite element equations by a small system of algebraic equations. The reduced equations are used to determine the stability boundary of the plate.In the second stage, a nonllnear solution in the vicinity of the stability boundary is obtained by using a bifurcation buckling mode as a predictor, and a set of reduced equations is generated. In the third stage, the reduced equations are used to trace post-buckling paths corresponding to various combinations of the load parameters.The potential of the proposed approach is discussed and its effectiveness is demonstrated by means of a numerical example of laminated composite plate subjected to combined compressive and shear loadings.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 23 (1986), S. 1329-1341 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Reduction method and computational procedures are presented for reducing the size of the analysis model and the number of degrees of freedom used in predicting the non-linear response of symmetric anisotropic panels. The two key elements of the method are (a) operator splitting, or decomposition of the characteristic arrays of the finite element model into sums of orthotropic and non-orthotropic contributions, (b) application of a reduction method through the successive use of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate a small number of global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the classical Rayleigh-Ritz technique.The global approximation vectors are selected to be those commonly used in single (or multiple) parameter perturbation techniques, namely a non-linear solution corresponding to zero non-orthotropic arrays and a number of its derivatives with respect to an anisotropic tracing parameter (and possibly, to a load or arc-length parameter in the solution space). The size of the analysis model used in generating the global approximation vectors is identical to that of the corresponding orthotropic structure.The effectiveness of the proposed reduction method is demonstrated by means of a numerical example, and its potential for solving quasi-symmetric non-linear problems of anisotropic panels is discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 24 (1987), S. 2057-2070 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An officient preconditioned conjugate gradient (PCG) technique and a computational procedure are presented for the analysis of symmetric anisotropic structures. The technique is based on selecting the preconditioning matrix as the orthotropic part of the global stiffness matrix of the structure, with all the nonorthotropic terms set equal to zero. This particular choice of the preconditioning matrix results in reducing the size of the analysis model of the anisotropic structure to that of the corresponding orthotropic structure. The similarities between the proposed PCG technique and a reduction technique previously presented by the authors are identified and exploited to generate from the PCG technique direct measures for the sensitivity of the different response quantities to the non-orthotropic (anisotropic) material coefficients of the structure. The effectiveness of the PCG technique is demonstrated by means of a numerical example of an anisotropic cylindrical panel.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 17 (1981), S. 615-631 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Simple mixed models are developed for the geometrically nonlinear analysis of deep arches. A total Lagrangian description of the arch deformation is used and the analytical formulation is based on a form of the nonlinear deep arch theory with the effects of transverse shear deformation included. The fundamental unknowns consist of the six internal forces and generalized displacements of the arch, and the element characteristic arrays are obtained by using Hellinger-Reissner mixed variational principle. The polynomial interpolation functions used in approximating the forces are one degree lower than those used for approximating the displacements, and the forces are discontinuous at the interelement boundaries.The equivalence between the mixed models developed herein and displacement models based on reduced integration of both the transverse shear and extensional energy terms is discussed. The advantages of mixed models over equivalent displacement models are outlined. Numerical results are presented to demonstrate the high accuracy and effectiveness of the mixed models developed, and compare their performance with other mixed models reported in the literature.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 18 (1982), S. 1429-1454 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Simple mixed models are developed for the geometrically nonlinear analysis of shells. A total Lagrangian description of the shell deformation is used, and the analytical formulation is based on a form of the nonlinear shallow shell theory with the effects of transverse shear deformation and bending-extensional coupling included. The fundamental unknowns consist of eight stress resultants and five generalized displacements of the shell, and the element characteristic arrays are obtained by using the Hellinger-Reissner mixed variational principle. The polynomial interpolation (or shape) functions used in approximating the stress resultants are, in general, of different degree than those used for approximating the generalized displacements. The stress resultants are discontinuous at the element boundaries and are eliminated on the element level.The equivalence and ‘near-equivalence’ between the mixed models developed herein and displacement models based on reduced/selective integration of both transverse shear and extensional energy terms is discussed. The use of reduction methods in conjunction with the mixed models is outlined and the advantages of mixed models over displacement models are delineated. Analytic expressions are derived for the rigid-body and spurious (or zero energy) models for the various mixed models and their equivalent displacement models. Also, the advantages of mixed models over equivalent displacement models are outlined. Numerical results are presented to demonstrate the high accuracy and effectiveness of the mixed models developed, and to compare their performance with other mixed models reported in the literature.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 24 (1987), S. 913-926 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A simple computational procedure is presented for reducing the size of the analysis model for a symmetric structure with asymmetric boundary conditions to that of the corresponding structure with symmetric boundary conditions. The procedure is based on approximating the asymmetric response of the structure by a linear combination of symmetric and antisymmetric global approximation vectors (or modes). The key elements of the procedure are (a) restructuring the governing finite element equations to delineate the contributions to the symmetric and antisymmetric components of the asymmetric response, (b) successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate a few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique.A tracing parameter is introduced which identifies all the contributions to the antisymmetric response. The global approximation vectors are selected to be the solution corresponding to a zero value of the tracing parameter and the various-order derivatives of the solution with respect to this parameter, evaluated at zero value of the parameter. The size of the analysis model used in generating the global approximation vectors is identical to that of the corresponding structure with symmetric boundary conditions.The effectiveness of the computational procedure is demonstrated by means of numerical examples of linear static problems of shells, and its potential for solving non-linear problems is discussed.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 11 (1977), S. 289-307 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Two aspects of the finite element analysis of mid-plane symmetrically laminated anisotropic plates are considered in this paper. The first pertains to exploiting the symmetries exhibited by anisotropic plates in their analysis. The second aspect pertains to the effects of anisotropy and shear deformation on the accuracy and convergence of shear-flexible displacement finite element models. Numerical results are presented which show the effects of increasing the order of approximating polynomials and of using derivatives of generalized displacements as nodal parameters.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 20 (1984), S. 1323-1348 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Hybrid analysis techniques based on the combined use of finite elements and the classical Bubnov-Galerkin approximation are presented for predicting nonlinear steady-state temperature distributions in structures and solids. In these hybrid techniques the modelling versatility of the finite element method is preserved and a substantial reduction in the number of degrees-of-freedom is achieved by expressing the vector of nodal temperatures as a linear combination of a small number of global-temperature modes, or basis vectors. The Bubnov-Galerkin technique is then used to compute the coefficients of the linear combination (i.e. the amplitudes of the global-temperature modes).The basis vectors chosen are the path derivatives commonly used in perturbation techniques, namely, the derivatives of the nodal-temperature vector with respect to a preselected control (or path) parameter(s). The vectors are generated by using the finite element model of the initial discretization. Also, the performance of alternate sets of basis vectors is investigated. In the alternate sets, only a few path derivatives are generated, and they are augmented by a constant vector representing a uniform temperature rise (or drop), and by reciprocal vectors with nonzero components equal to the reciprocals of the nonzero components of the path derivatives. A problem-adaptive computational algorithm is presented for efficient evaluation of global approximation vectors and generation of the reduced system of equations and for monitoring the accuracy of the reduced system of equations.The potential of the proposed reduction methods for the solution of large-scale, nonlinear steady-state thermal problems is also discussed. The effectiveness of these methods is demonstrated by means of four numerical examples, including conduction, convection and radiation modes of heat transfer.This study shows that the use of the uniform-temperature mode and the path derivatives as global approximation vectors significantly increases the accuracy of the solutions obtained by reduction methods, thereby enhancing the effectiveness of these methods for the solution of large-scale, nonlinear thermal problems.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 26 (1988), S. 1145-1167 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An efficient computational strategy is presented for reducing the cost of the stress and free vibration analyses of laminated anisotropic shells of revolution. The analytical formulation is based on a form of the Sanders-Budiansky shell theory including the effects of both the transverse shear deformation and the laminated anisotropic material response. The fundamental unknowns consist of the eight strain components, the eight stress resultants and the five generalized displacements of the shell. Each of the shell variables is expressed in terms of trigonometric functions (Fourier series) in the circumferential co-ordinate, and a three-field mixed finite element model is used for the discretization in the meridional direction.The shell response associated with a range of Fourier harmonics is approximated by a linear combination of a few global approximation vectors, which are generated at a particular value of the Fourier harmonic, within that range. The full equations of the finite element model are solved for only a single Fourier harmonic, and the response corresponding to the other Fourier harmonics is generated using a reduced system of equations with considerably fewer degrees of freedom.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...