ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Adopting an updated Lagrange approach, the general framework for the fully non-linear analysis of curved shells is developed using a simple quadrilateral C0 model (HMSH5). The governing equations are derived based on a consistent linearization of an incremental mixed variational principle of the modified Hellinger/Reissner type with independent assumptions for displacement and strain fields. Emphasis is placed on devising effective solution procedures to deal with large rotations in space, finite stretches and generalized rate-type material models. In particular, a geometrically exact scheme for configuration update is developed by making use of the so-called exponential mapping algorithm, and the resulting element was shown to exhibit a quadratic rate of (asymptotic) convergence in solving practical shell problems with Newton-Raphson type iterative schemes. For the purpose of updating the spatial stress field of the element, an ‘objective’ generalized midpoint integration rule is utilized, which relies crucially on the concept of polar decomposition for the deformation gradient, and is in keeping with the underlying mixed method. Finally, the effectiveness and practical usefulness of the HMSH5 element are demonstrated through a number of test cases involving beams, plates and shells undergoing very large displacements and rotations.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...