ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Planets 125(9), (2020): e2019JE006209, doi:10.1029/2019JE006209
    Description: Saturn's moon Enceladus has a global subsurface ocean and a porous rocky core in which water‐rock reactions likely occur; it is thus regarded as a potentially habitable environment. For icy moons like Enceladus, tidal heating is considered to be the main heating mechanism, which has generally been modeled using viscoelastic solid rheologies in existing studies. Here we provide a new framework for calculating tidal heating based on a poroviscoelastic model in which the porous solid and interstitial fluid deformation are coupled. We show that the total heating rate predicted for a poroviscoelastic core is significantly larger than that predicted using a classical viscoelastic model for intermediate to large (〉1014 Pa·s) rock viscosities. The periodic deformation of the porous rock matrix is accompanied by interstitial pore fluid flow, and the combined effects through viscous dissipation result in high heat fluxes particularly at the poles. The heat generated in the rock matrix is also enhanced due to the high compressibility of the porous matrix structure. For a sufficiently compressible core and high permeability, the total heat production can exceed 10 GW—a large fraction of the moon's total heat budget—without requiring unrealistically low solid viscosities. The partitioning of heating between rock and fluid constituents depends most sensitively on the viscosity of the rock matrix. As the core of Enceladus warms and weakens over time, pore fluid motion likely shifts from pressure‐driven local oscillations to buoyancy‐driven global hydrothermal convection, and the core transitions from fluid‐dominated to rock‐dominated heating.
    Description: 2021-01-28
    Keywords: Ocean worlds ; Enceladus ; Tidal heating
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rovira‐Navarro, M., Katz, R., Liao, Y., Wal, W., & Nimmo, F. The tides of Enceladus’ porous core. Journal of Geophysical Research: Planets, 127, (2022): e2021JE007117, https://doi.org/10.1029/2021je007117.
    Description: The inferred density of Enceladus' core, together with evidence of hydrothermal activity within the moon, suggests that the core is porous. Tidal dissipation in an unconsolidated core has been proposed as the main source of Enceladus' geological activity. However, the tidal response of its core has generally been modeled assuming it behaves viscoelastically rather than poroviscoelastically. In this work, we analyze the poroviscoelastic response to better constrain the distribution of tidal dissipation within Enceladus. A poroviscoelastic body has a different tidal response than a viscoelastic one; pressure within the pores alters the stress field and induces a Darcian porous flow. This flow represents an additional pathway for energy dissipation. Using Biot's theory of poroviscoelasticity, we develop a new framework to obtain the tidal response of a spherically symmetric, self-gravitating moon with porous layers and apply it to Enceladus. We show that the boundary conditions at the interface of the core and overlying ocean play a key role in the tidal response. The ocean hinders the development of a large-amplitude Darcian flow, making negligible the Darcian contribution to the dissipation budget. We therefore infer that Enceladus' core can be the source of its geological activity only if it has a low rigidity and a very low viscosity. A future mission to Enceladus could test this hypothesis by measuring the phase lags of tidally induced changes of gravitational potential and surface displacements.
    Description: M. Rovira-Navarro has been financially supported by the Space Research User Support program of the Netherlands Organization for Scientific Research (NWO) under contract number ALW-GO/16–19. F. Nimmo and Y. Liao have been supported by the National Aeronautics and Space Administration (NASA) Solar System Workings (SSW) Program, Grant No. 80NSSC21K0158. R. Katz acknowledges funding from the Leverhulme Trust through a Research Project Grant.
    Keywords: Enceladus ; Tides ; Poroviscoelasticity ; Interior ; Hydrotherma
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...