ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-11-02
    Description: The TFP1 gene of the yeast Saccharomyces cerevisiae encodes two proteins: the 69-kilodalton (kD) catalytic subunit of the vacuolar proton-translocating adenosine triphosphatase (H(+)-ATPase) and a 50-kD protein. The 69-kD subunit is encoded by the 5' and 3' thirds of the TFP1 coding region, whereas the 50-kD protein is encoded by the central third. Evidence is presented that both the 69-kD and 50-kD proteins are obtained from a single translation product that is cleaved to release the 50-kD protein and spliced to form the 69-kD subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kane, P M -- Yamashiro, C T -- Wolczyk, D F -- Neff, N -- Goebl, M -- Stevens, T H -- GM38006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 2;250(4981):651-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2146742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Genes, Fungal ; Protein Biosynthesis ; *Protein Processing, Post-Translational ; Proton-Translocating ATPases/*biosynthesis/genetics ; RNA, Messenger/analysis ; Rabbits ; Saccharomyces cerevisiae/*enzymology ; Vacuoles/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 256 (1997), S. 365-375 
    ISSN: 1617-4623
    Keywords: Key words CAK ; Cell cycle ; Cyclin-dependent kinase ; Elongated buds ; Protein kinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Saccharomyces cerevisiae, entry into S phase requires the activation of the protein kinase Cdc28p through binding with cyclin Clb5p or Clb6p, as well as the destruction of the cyclin-dependent kinase inhibitor Sic1p. Mutants that are defective in this activation event arrest after START, with unreplicated DNA and multiple, elongated buds. These mutants include cells defective in CDC4, CDC34 or CDC53, as well as cells that have lost all CLB function. Here we describe mutations in another gene, CAK1, that lead to a similar arrest. Cells that are defective in CAK1 are inviable and arrest with a single nucleus and multiple, elongated buds. CAK1 encodes a protein kinase most closely related to the Cdc2p family of protein kinases. Mutations that lead to the production of an inactive kinase that can neither autophosphorylate, nor phosphorylate Cdc28p in vitro are also incapable of rescuing a cell with a deletion of CAK1. These results underscore the importance of the Cak1p protein kinase activity in cell cycle progression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...