ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-10
    Description: The objective of this work was to conduct a modeling study of SiC P-N junction diodes operating under high reverse biased conditions. Analytical models and numerical simulation capabilities were to be developed for self-consistent electro-thermal analysis of the diode current-voltage (I-V) characteristics. Data from GRC indicate that screw dislocations are unavoidable in large area SiC devices, and lead to changes in the SiC diode electrical response characteristics under high field conditions. For example, device instability and failures linked to internal current filamentation have been observed. The physical origin of these processes is not well understood, and quantitative projections of the electrical behavior under high field and temperature conditions are lacking. Thermal calculations for SiC devices have not been reported in the literature either. So estimates or projections of peak device temperatures and power limitations do not exist. This numerical study and simulation analysis was aimed at resolving some of the above issues. The following tasks were successfully accomplished: (1) Development of physically based models using one- and two-dimensional drift-diffusion theory for the transport behavior and I-V characteristics; (2) One- and two-dimensional heat flow to account for internal device heating. This led to calculations of the internal temperature profiles, which in turn, were used to update the electrical transport parameters for a self-consistent analysis. The temperature profiles and the peak values were thus obtainable for a given device operating condition; (3) Inclusion of traps assumed to model the presence of internal screw dislocations running along the longitudinal direction; (4) Predictions of the operating characteristics with and without heating as a function of applied bias with and without traps. Both one and two-dimensional cases were implemented; (5) Assessment of device stability based on the operating characteristics. The presence of internal non-uniformities, particularly filamentary structures, was probed and demonstrated; (6) Cause and physical origins of filamentary behavior and unstable I-V characteristics were made transparent; (7) It was demonstrated that diodes containing defects would be more prone to thermal breakdown associated with the temperature dependent decrease in the thermal conductivity; and (8) Finally, negative differential resistance (S-shaped NDR) which can potential lead to device instability and filamentary behavior was shown to occur for diodes containing a line of defects such as could be associated with a screw dislocation line.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...