ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Blackwell Publishing for personal use, not for redistribution. The definitive version was published in Journal of Animal Ecology 74 (2005): 589-600, doi:10.1111/j.1365-2656.2005.00929.x.
    Description: Selectivity of harvest influences harvest sustainability because individuals with different characteristics contribute differently to population growth. We investigate the effects of selection based on chick weight on a traditional harvest of the sooty shearwater Puffinus griseus by Rakiura Maori in New Zealand.
    Description: This research was funded by a New Zealand Foundation for Research Science and Technology grant to Rakiura Maori and by the US Environmental Protection Agency (R-82908901–0). It was also supported by the University of Auckland Statistics Department, University of Otago, Te Runanga o Ngai Tahu, the New Zealand Department of Conservation, and Southwest Helicopters Ltd.
    Keywords: Elasticity ; Demography ; Matrix population models ; Petrel ; Traditional harvest
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 2007738 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2005. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 15 (2005): 1036–1052, doi:10.1890/04-0434.
    Description: Boltonia decurrens is an endangered plant restricted to the Illinois River Valley. Its complex life cycle has evolved in response to the dynamics of the historic flood regime, which has changed dramatically in the last century due to the construction of navigation dams and agricultural levees. To explore the effects of these changes, we developed deterministic and stochastic matrix population models of the demography of Boltonia. We used periodic matrix models to incorporate intra-annual seasonal variation. We estimated parameters as a function of the timing of spring flood recession (early or late) and of growing season precipitation (high or low). Late floods and/or low precipitation reduce population growth (λ). Early floods and high precipitation lead to explosive population growth. Elasticity analysis shows that changes in floods and precipitation alter the life history pathways responsible for population growth, from annual to biennial and eventually clonal pathways. We constructed and analyzed a stochastic model in which flood timing and precipitation vary independently, and we computed the stochastic growth rate (log λs) and the variance growth rate (σ2) as functions of the frequency of late floods and low precipitation. Using historical data on floods and rainfall over the last 100 years, we found that log λs has declined as a result of hydrological changes accompanying the regulation of the river. Stochastic elasticity analysis showed that over that time the contribution of annual life history pathways to log λs has declined as the contributions of biennial and clonal pathways have increased. Over the same time period, σ2 has increased, in agreement with observations of large fluctuations in local B. decurrens populations. Undoubtedly, many plant and animal species evolved in concert with dynamic habitats and are now threatened by anthropogenic changes in those dynamics. The data and analyses used in this study can be applied to management and development strategies to preserve other dynamic systems.
    Description: This work was supported by grants to M. Smith from NSF (DEB 9509763, DED 9321517), USACE, Illinois Groundwater Consortium and USFWS, and an EPA STAR grant (U- 91578101-2) to P. Mettler. H. Caswell also received support from NSF grant OCE-9983976 and EPA grant R-82908901, and a Maclaurin Fellowship from the New Zealand Institute of Mathematics and its Applications.
    Keywords: Boltonia decurrens ; Conservation ; Elasticity ; Floodplain ; Flood regime ; LTRE ; Matrix population model ; Periodic matrix model ; Stochastic elasticity ; Stochastic environment ; Stochastic matrix model ; Threatened species
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © University of Chicago, 2010. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in American Naturalist 175 (2010): 739-752, doi:10.1086/652436.
    Description: We present a new approach to modeling two‐sex populations, using periodic, nonlinear two‐sex matrix models. The models project the population growth rate, the population structure, and any ratio of interest (e.g., operational sex ratio). The periodic formulation permits inclusion of highly seasonal behavioral events. A periodic product of the seasonal matrices describes annual population dynamics. The model is nonlinear because mating probability depends on the structure of the population. To study how the vital rates influence population growth rate, population structure, and operational sex ratio, we used sensitivity analysis of frequency‐dependent nonlinear models. In nonlinear two‐sex models the vital rates affect growth rate directly and also indirectly through effects on the population structure. The indirect effects can sometimes overwhelm the direct effects and are revealed only by nonlinear analysis. We find that the sensitivity of the population growth rate to female survival is negative for the emperor penguin, a species with highly seasonal breeding behavior. This result could not occur in linear models because changes in population structure have no effect on per capita reproduction. Our approach is applicable to ecological and evolutionary studies of any species in which males and females interact in a seasonal environment.
    Description: H.C. acknowledges support from the National Science Foundation (DEB-0343820 and DEB-0816514) and the Ocean Life Institute and the hospitality of the Max Planck Institute for Demographic Research.
    Keywords: Two‐sex periodic matrix model ; Population structure ; Population growth rate ; Mating systems ; Sex ratio ; Emperor penguin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Ecology 103 (2015): 202–218, doi:10.1111/1365-2745.12334.
    Description: Schedules of survival, growth and reproduction are key life-history traits. Data on how these traits vary among species and populations are fundamental to our understanding of the ecological conditions that have shaped plant evolution. Because these demographic schedules determine population growth or decline, such data help us understand how different biomes shape plant ecology, how plant populations and communities respond to global change and how to develop successful management tools for endangered or invasive species. Matrix population models summarize the life cycle components of survival, growth and reproduction, while explicitly acknowledging heterogeneity among classes of individuals in the population. Matrix models have comparable structures, and their emergent measures of population dynamics, such as population growth rate or mean life expectancy, have direct biological interpretations, facilitating comparisons among populations and species. Thousands of plant matrix population models have been parameterized from empirical data, but they are largely dispersed through peer-reviewed and grey literature, and thus remain inaccessible for synthetic analysis. Here, we introduce the compadre Plant Matrix Database version 3.0, an open-source online repository containing 468 studies from 598 species world-wide (672 species hits, when accounting for species studied in more than one source), with a total of 5621 matrices. compadre also contains relevant ancillary information (e.g. ecoregion, growth form, taxonomy, phylogeny) that facilitates interpretation of the numerous demographic metrics that can be derived from the matrices. Large collections of data allow broad questions to be addressed at the global scale, for example, in genetics (genbank), functional plant ecology (try, bien, d3) and grassland community ecology (nutnet). Here, we present compadre, a similarly data-rich and ecologically relevant resource for plant demography. Open access to this information, its frequent updates and its integration with other online resources will allow researchers to address timely and important ecological and evolutionary questions.
    Keywords: Big data ; Comparative approach ; Elasticity ; Matrix population model ; Open access ; Plant population and community dynamics ; Population growth rate ; Sensitivity ; Transient dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...