ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • East Pacific rise  (2)
  • Knorr (Ship : 1970-) Cruise KN31  (1)
  • 1
    ISSN: 1573-0581
    Keywords: East Pacific rise ; seamounts ; seafloor volcanism ; MELT
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A widespread seamount province, the Rano Rahi Field, is located near the superfast spreading Southern East Pacific Rise (SEPR) between 15°–19° S. Particularly abundant volcanic edifices are found on Pacific Plate aged 0 to ∼ 6.5 Ma between 17°–19° S, an area greater than 100,000 km2. The numbers of seamounts and their volume are several times greater than those of a comparablysurveyed area near the Northern East Pacific Rise (NEPR), 8°–17° N. Most of the Rano Rahi seamounts belong to chains, which vary in length from ∼ 25 km to 〉240 km and which are very nearly collinear with the Pacific absolute and relative plate motion directions. Bends of 10°–15° occur along a few of the chains, and some adjacent chains converge or diverge slightly. Many seamount chains have fluctuations in volume along their length, and statistical tests suggest that some adjacent chains trade-off in volume. Several seamount chains split into two lines of volcanoes approaching the axis. In general, seamount chains composed of individual circular volcanoes are found near the axis; the chains consist of variably-overlapping edifices in the central part of the survey; to the west, volcanic ridges predominate. Near the SEPR, the volume of nearaxis seamount edifices is generally reduced near areas of deflated cross-sectional area of the axial ridge. Fresh lava flows, as imaged by sidescan sonar and sampled by dredging, exist around some seamounts throughout the entire survey area, in sharp contrast to the absence of fresh flows beyond ∼ 30 km from the NEPR. Also, the increases in seamount abundance and volume extend to much greater crustal ages than near the NEPR. Seamount magnetization analysis is also consistent with this wider zone of seamount growth, and it demonstrates the asynchronous formation of most of the seamount chains and volcanic ridges. The variety of observations of the SEPR seamounts suggests that a number of factors and mechanisms might bring about their formation, including the mantle upwelling associated with superfast spreading, off-axis mantle heterogeneities, miniplumes and local upwelling, and the vulnerability of the lithosphere to penetration by volumes of magma. In particular, we note the association of extensive, recent volcanism with intermediate wavelength gravity lineaments lows on crust aged ∼ 6 Ma. This suggests that the lineaments and some of the seamounts share a common cause which may be related to ridge-perpendicular asthenospheric convection and/or some manner of extension in the lithosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0581
    Keywords: East Pacific rise ; map series ; seamounts ; melt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Four large-scale bathymetric maps of the Southern East Pacific Rise and its flanks between 15° S and 19° S display many of the unique features of this superfast spreading environment including abundant seamounts (the Rano Rahi Field), axial discontinuities, discontinuity migration, and abyssal hill variation. Along with a summary of the regional geology, these maps will provide a valuable reference for other sea-going programs on-and off-axis in this area, including the Mantle ELectromagnetic and Tomography (MELT) experiment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1975
    Description: The Mid-Atlantic Ridge is one of the most well known and yet poorly understood spreading centers in the world. A detailed investigation of the Mid-Atlantic Ridge crest near 37°N (FAMOUS) was conducted using a deeply towed instrument package. The objective was to study the detailed structure and spreading history of the Mid-Atlantic Ridge median valley, to explore the roles of volcanism and faulting in the evolution of oceanic crust, and to study the morphologic expression and structural history of the zone of crustal accretion. In addition, microearthquake surveys were conducted using arrays of free-floating hydrophones. The most recent expression of the accreting plate boundary in the Famous Rift is an alternating series of linear central volcanoes and depressions 1.5 km wide which lie within the inner floor. This lineament is marked by a sharp maximum in crustal magnetization only 2-3 km wide. Magnetic studies indicate that over 90% of the extrusive volcanism occurs within the rift inner floor, a zone 1 to 12 km wide, while volcanism is extremely rare in the rift mountains. Volcanoes created in the inner floor are transported out on, block faults, becoming a lasting part of the topography. Magnetic anomaly transition widths vary from 1 km to 8 km with time and appear to reflect a bi-stable median valley structure. The valley has either a wide inner floor and narrow terraces, in which case the volcanic zone is wide and magnetic anomalies are poorly recorded (wide transition widths); or it has a narrow inner floor and wide terraces, the volcanic zone is then narrow and anomalies are clearly recorded (narrow transition widths). The median valley of any ridge segment varies between these two structures with time. At present the. Famous Rift has a narrow inner floor and volcanic zone (1-3 km) while the south Famous Rift is at the opposite end of the cycle with a wide inner floor and volcanic zone (10-12 km). Over 95% of the large scale (〉2 km) relief of the median valley is accounted for by normal faults dipping toward the valley axis. Normal faulting along fault planes dipping away from the valley begins just past the outer walls of the valley. Outward facing normal faulting accounts for most of the decay of median valley relief in the rift mountains while crustal tilting accounts for less than 20%. The pattern of normal faulting creates a broad, undulating horst and graben relief. Volcanic features contribute little to the large scale relief, but contribute to the short wavelength (〈2km) roughness of the topography. Spreading in the Famous area is highly asymmetric with rates twice as high to the east as to the west. At 1.7 m.y.b.p. the sense of asymmetry reverses in direction with spreading faster to the west, resulting in a gross symmetry when averaged through time. The change in spreading asymmetry occurred in less than 0.15 m.y. Structural studies indicate that the asymmetric spreading is accomplished through asymmetric crustal extension as well as asymmetric crustal accretion. Spreading in the Famous area is 17° oblique. Even on a fine scale there is no indication of readjustment to an orthogonal plate boundary system. Spreading has been stably oblique for at least 6 m.y., even through a change in spreading direction. Magnetic studies reveal that the deep DSDP hole at site 332 was drilled into a magnetic polarity transition, and may have sampled rocks which recorded the earth i s field behavior during a reversal. The presence of negative polarity crust within the Brunhes normal epoch in the inner floor has been determined, and may be due to old crust left behind or recording of a geomagnetic field event. Crustal magnetization decays to lie of its initial value in less than 0.6 m.y. The rapid decay may be facillitated by very intense crustal fracturing observed in the inner floor. Microearthquake, magnetic and structural studies indicate that both the spreading and transform plate boundaries are very narrow (1-2 km) and well-defined for short periods, but migrate over zones 10-20 km wide through time.
    Keywords: Submarine geology ; Geophysics ; Geomorphology ; Plate tectonics ; Knorr (Ship : 1970-) Cruise KN31
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 10114098 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...