ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Volcanic activity is the main natural sources of sulphur dioxide (SO2) to the atmosphere. Although total anthropogenic sources are overwhelming greater, volcanoes like Mt. Etna and many others are considered to be among the biggest point sources of SO2 also during intereruptive periods. Apart from being one of the most impressive geodynamic expressions, volcanoes are also an important tourist attraction. During the summer season the number of tourists visiting the summit craters each day is on average many tens at Stromboli, hundreds at Vulcano and thousands at Mt. Etna. Of course touristic exploitation of active volcanic areas cannot exempt from warranting a reasonable security to the visiting persons. But while many risks in these areas have been since long time considered, gas hazard, a very subtle risk, is often disregarded. For healthy persons, about 1000 µg m-3 of sulphur dioxide is sensed by smell, 2000 to 4000 µg m-3 cause eye, nose and throat irritation, and 10,000 to 15,000 µg m-3 cause respiratory failure. For individuals with bronchial asthma or lung diseases, exposure to much lower doses could be fatal. Generally, a 700 µg m-3 level is considered to be a safe limit for such persons. The atmospheric concentrations of naturally emitted SO2 were measured at three volcanoes of southern Italy (Mt. Etna, Vulcano and Stromboli). Measurements were made with a network of passive samplers positioned at about 1.5 m above the ground, which gave time-integrated values for periods from few days to 1 month. Samplers were placed in zones of the volcanoes with high tourist frequentation. Measured concentrations reach values as high as 2700, 2400 and 10,000 µg m-3 for Etna, Vulcano and Stromboli respectively. Such values are absolutely dangerous to people affected by bronchial asthma or lung diseases. But considering that these are average values over periods from few days up to one month, SO2 concentrations could reach much higher peak values that could be dangerous also to healthy people. The present study evidences a peculiar volcanic risk connected to the touristic exploitation of active volcanic areas. Such risk is particularly enhanced at Mt.Etna where elderly and not perfectly healthy people can easily reach, with cableway and off-road vehicles, areas with dangerous SO2 concentrations.
    Description: Published
    Description: Bari, Italy
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: volcanic degassing ; sulphur dioxide ; passive samplers ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The seismic events caused by human engineering activities are commonly termed as “triggered” and “induced”. This class of earthquakes, though characterized by low-to-moderate magnitude, have significant social and eco- nomical implications since they occur close to the engineering activity responsible for triggering/inducing them and can be felt by the inhabitants living nearby, and may even produce damage. One of the first well-documented examples of induced seismicity was observed in 1932 in Algeria, when a shallow magnitude 3.0 earthquake occurred close to the Oued Fodda Dam. By the continuous global improvement of seismic monitoring networks, numerous other examples of human-induced earthquakes have been identified. Induced earthquakes occur at shallow depths and are related to a number of human activities, such as fluid injection under high pressure (e.g. waste-water disposal in deep wells, hydrofracturing activities in enhanced geothermal systems and oil recovery, shale-gas fracking, natural and CO2 gas storage), hydrocarbon exploitation, groundwater extraction, deep underground mining, large water impoundments and underground nuclear tests. In Italy, induced/triggered seismicity is suspected to have contributed to the disaster of the Vajont dam in 1963. Despite this suspected case and the presence in the Italian territory of a large amount of engineering activities “capable” of inducing seismicity, no extensive researches on this topic have been conducted to date. Hence, in order to improve knowledge and correctly assess the potential hazard at a specific location in the future, here we started a preliminary study on the entire range of engineering activities currently located in Sicily (Southern Italy) which may “potentially” induce seismicity. To this end, we performed: • a preliminary census of all engineering activities located in the study area by collecting all the useful information coming from available on-line catalogues; • a detailed compilation of instrumental and historical seismicity, focal mechanisms solutions, multidisciplinary stress indicators, GPS-based ground deformation field, mapped faults, etc by merging data from on-line catalogues with those reported in literature. Finally, for each individual site, we analysed: i) long-term statistic behaviour of instrumental seismicity (mag- nitude of completeness, seismic release above a threshold magnitude, depth distribution, focal plane solutions); ii) long-term statistic behaviour of historical seismicity (maximum magnitude estimation, recurrence time inter- val, etc); iii) properties and orientation of faults (length, estimated geological slip, kinematics, etc); iv) regional stress (from borehole, seismological and geological observations) and strain (from GPS-based observations) fields.
    Description: Unpublished
    Description: Vienna (Austria)
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: open
    Keywords: Earthquake, seismicity ; Sicily, induced seismicity ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Volcanic and geothermal areas are one of the major natural sources of sulphur gases to the atmosphere. Hydrogen sulphide (H2S) is a toxic gas mainly associated to geothermal systems while sulphur dioxide (SO2) is released in huge quantities from volcanoes characterized by open conduit activity. Apart from being one of the most impressive geodynamic expressions, volcanoes are also an important tourist attraction. During the summer season the number of tourists visiting the crateric areas each day is on average many tens at Stromboli, hundreds at Vulcano, Santorini and Nisyros and thousands at Etna. Touristic exploitation of active volcanic areas cannot exempt from warranting a reasonable security to the visiting persons. But while many risks in these areas have been since long time considered, gas hazard, a very subtle risk, is often disregarded. The atmospheric concentrations and dispersion pattern of naturally emitted SO2 were measured at three volcanoes of southern Italy (Etna, Vulcano and Stromboli) while that of H2S at four volcanic/geothermal areas of Greece (Sousaki, Milos, Santorini and Nisyros). Measurements were made with a network of passive samplers positioned at about 1.5 m above the ground, which gave time-integrated values for periods from few days to 1 month. Samplers were placed in zones of the volcanoes with high tourist frequentation. Measured concentrations and dispersion pattern depend on the strength of the source (craters, fumaroles), meteorological conditions and geomorphology of the area. At Etna, Vulcano, Stromboli and Nisyros measured concentrations reach values that are absolutely dangerous to people affected by bronchial asthma or lung diseases. But considering that these are average values over periods from few days up to one month, concentrations could have reached much higher peak values dangerous also to healthy people. The present study evidences a peculiar volcanic risk connected to the touristic exploitation of volcanic areas. Such risk is particularly enhanced at Etna where elderly and not perfectly healthy people can easily reach, with cableway and off-road vehicles, areas with dangerous SO2 concentrations.
    Description: Published
    Description: Bari, Italy
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: sulphur gases ; passive samplers ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...