ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: Vegetational changes are primary indicators of the present and future ecological status of the globe. These are changes which not only impact upon the primary productivity, but the total of the biogeochemical processes occurring on the planet. The impacts of global climatic and other environmental changes on vegetation must be monitored by some means in order to develop models which will allow us to predict long term effects. Large scale monitoring is now possible only with remote sensing systems, primarily passive reflectance, obtained by the use of satellite and aircraft platforms. However, passive reflectance techniques at this time are limited in their ability to detect subtle changes in the concentration and oxidation states of the many compounds involved in the light reactions of photosynthesis. Knowledge of these changes we consider to be fundamental in the remote assessment of both the rate and efficiency of photosynthesis and also the early detection of stress damage. The above factors pointed to the desirability of a sensing technique with the sensitivity and specificity necessary for detecting and quantifying those biological entities involved in photosynthesis. Another optical technique for vegetation monitoring is fluorescence. Previously, the lack of adequate excitation light sources and detector technologies have limited the use of fluorescence on intact plant leaves in the field. It is only recently with the advent of lasers with short pulse duration and advanced detector technologies that fluorescence measurements in the remote mode have become possible in the presence of ambient light.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance (R) measurements, whi ch provide estimates of relative vegetation vigor based primarily on chlorophyll content. Vegetation chlorophyll fluorescence (CF) offers a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, monitoring of vegetation vigor based on CF may allow earlier stress detection and more accurate carbon sequestra tion estimates, than is possible using R data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contrib utions from both the reflected and fluoresced radiation. The aim of t his study is to determine the relative R and CF fractions contributing to Ra from the vegetation in the red to near-infrared region of the spectrum. The practical objectives of the study are to: 1) evaluate t he relationship between CF and R at the foliar level for corn, soybean, maple; and 2) for corn, determine if the relationship established f or healthy (optimal N) vegetation changes under N defiiency. To obtai n generally applicable results, experimental measurements were conducted on unrelated crop and tree species (maple, soybean and corn), unde r controlled conditions and a gradient of inorganic N fertilization l evels. Optical R spectra and actively induced CF emissions were obtained on the same foliar samples, in conjunction with measurements of p hotosynthetic function, pigment levels, and C and N content. The comm on spectral trends or similarities were examined. On average, 10-20% of apparent R at 685 nm was actually due to CF. The spectral trends in steady and maximum F varied significantly, with Fs (especially red) showing higher ability for species and treatment separation. The relative contribution of ChF to R varied significantly among species, with maple emitting much higher F amounts, as compared to corn and soybea n. Fs individual red and far-red bands and their ratio exhibited consistent species separations. For corn, the relative CF fraction increased in concert with the nutrient stress levels from 〈2% for non-stressed foliage to 〉7% for severely nutrient deficient plants. F685s provide d optimal treatment separation. This study confirms the trends in F68 5sE740s associated with N deficiency and vegetation stress, established usmg single narrow band excitation.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: To assess the contribution of chlorophyll fluorescence (ChlF) to apparent reflectance (Ra) in the red/far-red, spectra were collected on a C4 agricultural species (corn, Zea Mays L.) under conditions ranging from nitrogen deficiency to excess. A significant contribution of ChlF to Ra was observed, with on average 10-25% at 685nm and 2-6% at 740nm of Ra being due to ChlF. Higher ChlF was consistently measured from the abaxial leaf surface as compared to the adaxial. Using 350-665nm excitation, the study confirms the trends in three ChlF ratios established previously by active F technology, suggesting that the ChlF utility this technology has developed for monitoring vegetation physiological status is likely applicable also under natural solar illumination.
    Keywords: Earth Resources and Remote Sensing
    Type: International Geoscience and Remote Sensing Symposium; Jun 24, 2002 - Jun 28, 2002; Toronto; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The studies described herein were conducted to better define changes in fluorescence properties of leaves from field grown corn (Zea mays L.) as they relate to varying levels of nitrogen (N) fertilization. This research was directed toward: 1) providing a remote non-destructive sensing technique to aid in the determination of optimal rates of N fertilization in corn crops and, 2) defining parameters for further development of fluorescence instrumentation to be operated remotely at field canopy levels. Fluorescence imaging bands centered in the blue (450 nm), green (525 nm), red (680 nm), and far-red (740 nm) and ratios of these bands were compared with the following plant parameters: rates of photosynthesis, N:C ratio, pigment concentrations, and grain yields. Both the fluorescence and physiological measures exhibited similar curvilinear responses to N fertilization level while significant linear correlations were obtained among fluorescence bands and band ratios to certain physiological measures of plant productivity. The red / blue, red / green, far-red / blue, far-red /green fluorescence ratios are well suited for remote observation and provided high correlations to grain yield, LAI, N:C, and chlorophyll contents. The results from this investigation indicate that fluorescence technology could aid in the determination of N fertilization requirements for corn. This discussion will also address design concepts and preliminary field trials of a mobile field-based Laser Induced Fluorescence Imaging System (LIFIS) capable of simultaneously acquiring images of four fluorescence emission bands from areas of plant canopies equaling 1 sq m and greater without interference of ambient solar radiation.
    Keywords: Earth Resources and Remote Sensing
    Type: Geoscience and Remote Sensing; Jul 24, 2000 - Jul 28, 2000; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...