ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: Global land use and climate variability alter ecosystem conditions - including structure, function, and biological diversity - at a pace that requires unambiguous observations from satellite vantage points. Current global measurements are limited to general land cover, some disturbances, vegetation leaf area index, and canopy energy absorption. Flora is a pathfinding mission that provides new measurements of ecosystem structure, function, and diversity to understand the spatial and temporal dynamics of human and natural disturbances, and the biogeochemical and physiological responses of ecosystems to disturbance. The mission relies upon high-fidelity imaging spectroscopy to deliver full optical spectrum measurements (400-2500 nm) of the global land surface on a monthly time step at 45 meter spatial resolution for three years. The Flora measurement objectives are: (i) fractional cover of biological materials, (ii) canopy water content, (iii) vegetation pigments and light-use efficiency, (iv) plant functional types, (v) fire fuel load and fuel moisture content, and (vi) disturbance occurrence, type and intensity. These measurements are made using a multi-parameter, spectroscopic analysis approach afforded by observation of the full optical spectrum. Combining these measurements, along with additional observations from multispectral sensors, Flora will far advance global studies and models of ecosystem dynamics and change.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Data from a new space mission measuring integrated light-use efficiency could provide a breakthrough in understanding of global carbon, water, and energy dynamics, and greatly improve the accuracy of model predictions for terrestrial carbon cycles and climate. Over the past decade, Gamon and others have shown that changes in photo-protective pigments are sensitive indicators of declines in light-use efficiency of plants and plant canopies. The requirements for integrated diurnal measurements from space need to be defined, before a space mission can be formulated successfully using this concept. We used towerbased CO〈sub〉2〈/sub〉 flux data as idealized proxies for remote measurements, examining their sampling properties. Thousands of half-hourly CO〈sub〉2〈/dsub〉 flux measurements are needed before their average begins to converge on an average annual net CO〈sub〉2〈/sub〉 exchange. Estimates of daily integrated fluxes (i.e., diurnal curves) are more statistically efficient, especially if the spacing between measured days is quasiregular, rather than random. Using a few measurements per day one can distinguish among days with different net CO〈sub〉2〈/sub〉 exchanges. Fluxes sampled between mid-morning to mid-afternoon are more diagnostic than early morning or late afternoon measurements. Similar results (correlation 〉0.935) were obtained using 2 measurements per day with high accuracy ([:plusmn:]5%), 3 measurements per day with medium accuracy ([:plusmn:] 10%), or 5 measurements per day at lower accuracy ([:plusmn:]20%). An observatory in a geosynchronous or near-geosynchronous orbit could provide appropriate observations, as could a multi-satellite constellation in polar orbits, but there is a potential trade-off between the required number of observations per day and quality of each observation.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.CPR.4410.2011 , HyspIRI Science Symposium on Ecosystem Data Products; May 17, 2011 - May 18, 2011; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Using medium-large footprint lidar sampling of approximately 500 square km of Costa Rica, we assessed the vertical and horizontal complexity of a forest-dominated tropical landscape. As expected, vertical extents of structure and canopy heights estimated from lidar waveforms were smaller in high elevation forests than in forests at lower elevations. In areas of the park and long-protected areas of La Selva Biological Station, forests typically had more consistent ratios of median height to total height than areas with other types of recent land use. Areas outside the park exhibited both stronger and weaker spatial correlations in canopy properties than most areas within the park. We also simulated the effects of these differences on data products gridded from lidar transects, like those produced by the Vegetation Canopy Lidar (VCL) Mission.
    Keywords: Earth Resources and Remote Sensing
    Type: Dec 13, 1999 - Dec 17, 1999; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: On September 26, 1999, we mapped canopy structure over 90% of the Hubbard Brook Experimental Forest in White Mountain National Forest, New Hampshire, using the Laser Vegetation Imaging Sensor (LVIS). This airborne instrument was configured to emulate data expected from the Vegetation Canopy Lidar (VCL) space mission. We compared above ground heights of the tallest surfaces detected by lidar with average forest canopy heights estimated from tree-based measurements in or near 346 0.05 ha plots (made in autumn of 1997 and 1998). Vegetation heights had by far the predominant influence on lidar top heights, but with this large data set we were able to measure two significant secondary effects: those of steepness or slope of the underlying terrain and of tree crown form. The size of the slope effect was intermediate between that expected from models of homogeneous canopy layers and for solitary tree crowns. The first detected surfaces were also proportionately taller for plots with more basal area in broad leaved northern hardwoods than for mostly coniferous plots. We expected this because of the contrast between the shapes of cumulative distributions of surface area for elliptical or hemi-elliptical tree crowns and those for conical crowns. Correcting for these secondary effects, when appropriate data are available for calibration, may improve vegetation structure estimates in regional studies using VCL or similar lidar data sources.
    Keywords: Earth Resources and Remote Sensing
    Type: 85th Annual Meeting of the Ecological Society of America; Aug 06, 2000 - Aug 10, 2000; Snowbird, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-27
    Description: The local environment where we live within the Earth's biosphere is often taken for granted. This environment can vary depending on whether the land cover is a forest, grassland, wetland, water body, bare soil, pastureland, agricultural field, village, residential suburb, or an urban complex with concrete, asphalt, and large buildings. In general, the type and characteristics of land cover influence surface temperatures, sunlight exposure and duration, relative humidity, wind speed and direction, soil moisture amount, plant life, birds, and other wildlife in our backyards. The physical and biological properties (biophysical characteristics) of land cover help to determine our surface environment because they directly affect surface radiation, heat, and soil moisture processes, and also feedback to regional weather and climate. Depending on the spatial scale and land use intensity, land cover changes can have profound impacts on our local and regional environment. Over the past 350 years, the eastern half of the United States, an area extending from the grassland prairies of the Great Plains to the Gulf and Atlantic coasts, has experienced extensive land cover and land use changes that began with land clearing in the 1600s, led to extensive deforestation and intensive land use practices by 1920, and then evolved to the present-day landscape. Determining the consequences of such land cover changes on regional and global climate is a major research issue. Such research requires detailed historical land cover data and modeling experiments simulating historical climates. Given the need to understand the effects of historical land cover changes in the eastern United States, some questions include: - What were the most important land cover transformations and how did they alter biophysical characteristics of the land cover at key points in time since the mid-1600s? - How have land cover and land use changes over the past 350 years affected the land surface environment including surface weather, hydrologic, and climatic variability? - How do the potential effects of regional human-induced land cover change on the environment compare to similar changes that are caused by the natural variations of the Earth's climate system? To help answer these questions, we reconstructed a fractional land cover and biophysical parameter dataset for the eastern United States at 1650, 1850, 1920, and 1992 time-slices. Each land cover fraction is associated with a biophysical parameter class, a suite of parameters defining the biophysical characteristics of that kind of land cover. This new dataset is designed for use in computer models of land-atmosphere interactions, to understand and quantify the effects of historical land cover changes on the water, energy, and carbon cycles
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The presentation provides a summary of VSWIR data collected at 19-day intervals for most areas. TIR data was collected both day and night on a 5-day cycle (more frequently at higher latitudes), the TIR swath is four times as wide as VSWIR, and the 5-day orbit repeat is approximate. Topics include nested swath geometry for reference point design and coverage simulations for sample FLUXNET tower sites. Other points examined include variation in latitude for revisit frequency, overpass times, and TIR overlap geometry and timing between VSWIR data collections.
    Keywords: Earth Resources and Remote Sensing
    Type: HysplRl Science Symposium on Ecosystem Data Products; May 04, 2010 - May 05, 2010; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the coverage areas for the two instruments that are scheduled to be on board the HyspIRI mission, (i.e.,visible to short wave infrared (VSWIR) and a multispectral thermal infrared (TIR) imager.)
    Keywords: Earth Resources and Remote Sensing
    Type: HyspIRI Science Symposium on Ecosystem Data Products; May 04, 2010 - May 05, 2010; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...