ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (1)
  • 1
    Publication Date: 2019-07-13
    Description: This project's goals were to collect, analyze and interpret 3-dimensional physiographic data for understanding the processes responsible for landscape modification. The primary landforms to be studied were Neogene cinder cones in Arizona (San Francisco Volcanic Field (SFVF), Coconino and Kaibab National Forests, Arizona). We also obtained and are still analyzing digital topographic data for the Long Valley-White Mountains area of California, which display Quaternary normal fault scarps, as well as extensive evidence of degradation. The work resulted in a large database of measured rates of downslope transport of slope debris. It was hypothesized that the work would increase our understanding of process-response models of hillslope degradation, and of the effects of climate change and other parameters on degradation rates. In greater detail, our primary goal was to compare evolutionary sequences of hillslopes, as exemplified by the topography of landforms of the same type but of different ages, with measurements of the surficial processes active on the landforms. Assuming that other parameters, such as hillslope materials and vegetation are held constant, and that the effects of changing climate are negligible, then the sediment transport rates measured today on the landforms should be the same as those calculated from the inversion of landform topography by use of a diffusion-type model. However, if the effects of changing climate or other factors are not negligible, then the observed transport rates would differ from those which must be invoked to explain the current topography. We hypothesized in fact that because degradation on the event scale is highly transient and localized, we would find a wide divergence between modern, measured transport rates, and rates calculated by global landform inversion or modeling. Because of the length of time involved in collection of sufficient data on current degradation rates, we are still continuing to analyse and interpret the data. Completion of the work will increase our understanding of the potential effects of anthropogenic climate and surficial change on the Earth's solid surface, and possibly allow us to constrain paths of hill-slope evolution following anthropogenic modifications, as well as compare the short-term with the long-term rates of hillslope degradation.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...