ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-08
    Description: Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Description: Passive microwave techniques for sensing the Earth's atmosphere provide powerful tools for understanding and monitoring its dynamics.
    Keywords: Earth Resources and Remote Sensing
    Type: Technology Utilization Foundation; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Description: The scattering properties of cirrus clouds at submillimeter-wave frequencies are analyzed and characterized in this paper.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Applied Meteorology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-08
    Keywords: Earth Resources and Remote Sensing
    Type: Space Technology and Applications International Forum 2000; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Earth Resources and Remote Sensing
    Type: The First International Workshop on Spaceborne Cloud Profiling Radar; Tsukuba; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Rainfall intensities during extreme events over the continental U.S. are compared for several advanced radar products. These products include: 1) TRMM spaceborne radar (PR) near surface estimates; 2) NOAA Next-Generation Quantitative Precipitation Estimation (QPE) very high-resolution (1 km) radar-only national mosaics (Q2); 3) very high-resolution instantaneous gauge adjusted radar national mosaics, which we have developed by applying gauge correction on the Q2 instantaneous radar-only products; and 4) several independent C-band dual-polarimetric radar-estimated rainfall samples collected with the ARMOR radar in northern Alabama. Though accumulated rainfall amounts are often similar, we find the satellite and the ground radar rain rate pdfs to be quite different. PR pdfs are shifted towards lower rain rates, implying a much larger stratiform/convective rain ratio than do ground radar products. The shift becomes more evident during strong continental convective storms and much less during tropical storms. Resolving the continental/maritime regime behavior and other large discrepancies between the products presents an important challenge. A challenge to improve our understanding of the source of the discrepancies, to determine the uncertainties of the estimates, and to improve remote-sensing estimates of precipitation in general.
    Keywords: Earth Resources and Remote Sensing
    Type: M10-0502 , 2010 The Meeting of the Americas - Multi-Point Perspectives of Space Plasma; Aug 08, 2010 - Aug 13, 2010; Foz de Iguassu; Brazil
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-20
    Description: Integrated multi-sensor assessment is proposed as a novel approach to advance satellite precipitation validation in order to provide users and algorithm developers with an assessment adequately coping with the varying performances of merged satellite precipitation estimates. Gridded precipitation rates retrieved from space sensors with quasi-global coverage feed numerous applications ranging from water budget studies to forecasting natural hazards caused by extreme events. Characterizing the error structure of satellite precipitation products is recognized as a major issue for the usefulness of these estimates. The Global Precipitation Measurement (GPM) mission aims at unifying precipitation measurements from a constellation of low-earth orbiting (LEO) sensors with various capabilities to detect, classify and quantify precipitation. They are used in combination with geostationary observations to provide gridded precipitation accumulations. The GPM Core Observatory satellite serves as a calibration reference for consistent precipitation retrieval algorithms across the constellation. The propagation of QPE uncertainty from LEO active/passive microwave (PMW) precipitation estimates to gridded QPE is addressed in this study, by focusing on the impact of precipitation typology on QPE from the Level-2 GPM Core Observatory Dual-frequency Precipitation Radar (DPR) to the Microwave Imager (GMI) to Level-3 IMERG precipitation over the Conterminous U.S. A high-resolution surface precipitation used as a consistent reference across scales is derived from the ground radar-based Multi-Radar/Multi-Sensor. While the error structure of the DPR, GMI and subsequent IMERG is complex because of the interaction of various error factors, systematic biases related to precipitation typology are consistently quantified across products. These biases display similar features across Level-2 and Level-3, highlighting the need to better resolve precipitation typology from space and the room for improvement in global-scale precipitation estimates. The integrated analysis and framework proposed herein applies more generally to precipitation estimates from sensors and error sources affecting low-earth orbiting satellites and derived gridded products.
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN63401
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-20
    Description: We present a detailed overview of the structure and activities associated with the NASA-led ground validation component of the NASA-JAXA Global Precipitation Measurement (GPM) mission. The overarching philosophy and approaches for NASAs GV program are presented with primary focus placed on aspects of direct validation and a summary of physical validation campaigns and results. We describe a spectrum of key instruments, methods, field campaigns and data products developed and used by NASAs GV team to verify GPM level-2 precipitation products in rain and snow. We describe the tools and analysis framework used to confirm that NASAs Level-1 science requirements for GPM are met by the GPM Core Observatory. Examples of routine validation activities related to verification of Integrated Multi-satellitE Retrievals for GPM (IMERG) products for two different regions of the globe (Korea and the U.S.) are provided, and a brief analysis related to IMERG performance in the extreme rainfall event associated with Hurricane Florence is discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN63395 , Satellite Precipitation Measurement
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN63045 , 4th ICE-POP Workshop; Nov 27, 2018 - Nov 30, 2018; Jeju, South Korea; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...