ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • Earth Resources and Remote Sensing  (3)
Collection
  • Other Sources  (3)
Keywords
Years
  • 1
    Publication Date: 2004-12-03
    Description: This research is focusing on two related areas that are fundamental to the NASA PARCA (Program for Arctic Regional Climate Assessment) program. The primary research area is the determination of the amount, rate, and timing of accumulation at distributed sites in the dry snow zone of Greenland and evaluation of these results in light of accumulation modeling results. The secondary research area is the calibration of the isotope "thermometer" at these ice sheet sites as well as the determination of long-term temperature trends in Greenland.
    Keywords: Earth Resources and Remote Sensing
    Type: Program for Arctic Regional Climate Assessment (PARCA); 60-62; NASA/TM-1999-209205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: Satellite passive-microwave sensors provide a sensitive means of studying ice-sheet surface processes that assists ice-core interpretation and can extend local observations across regional scales. Analysis of special sensor microwave/imager (SSM/I) brightness temperature (TB) data supports ice-core research in two specific ways. First, the summer hoar complex layers used to date the Holocene portion of the Greenland Ice Sheet Project 2 ice core can be defined temporally and spatially by SSM/I 37-GHz vertically (V) and horizontally (H) polarized B ratio (V/H) trends. Second, comparison of automatic weather station temperatures to SSM/I 37-GHz V TB data shows that they are an effective proxy temperature record in this region. Also, the TB data can be correlated with proxy temperature trends from stable-isotope-ratio (delta O-18 and delta-D) profiles from snow pits and this allows the assignment of dates to specific snow depths.
    Keywords: Earth Resources and Remote Sensing
    Type: Laboratory for Hydrospheric Processes Research Publications; 99-100
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. First we provide comparisons between Terra and Aqua swath-based ISTs at approximately 14:00 Local Solar Time, reprojected to 12.5 km polar stereographic cells. Results show good correspondence when Terra and Aqua data were acquired within 2 hrs of each other. For example, for a cell centered over Summit Camp (72.58 N, 38.5 W), the average agreement between Terra and Aqua ISTs is 0.74 K (February 2003), 0.47 K (April 2003), 0.7 K (August 2003) and 0.96 K (October 2003) with the Terra ISTs being generally lower than the Aqua ISTs. More precise comparisons will be calculated using pixel data at the swath level, and correspondence between Terra and Aqua IST is expected to be closer. (Because of cloud cover and other considerations, only a few common cloud-free swaths are typically available for each month for comparison.) Additionally, previous work comparing land-surface temperatures (LSTs) from the standard MODIS LST product and in-situ surface-temperature data at Summit Camp on the Greenland Ice Sheet show that Terra MODIS LSTs are about 3 K lower than in-situ temperatures at Summit Camp, during the winter of 2008-09. This work will be repeated using both Terra and Aqua IST pixel data (in place of LST data). In conclusion, we demonstrate that the uncertainties in the CDR will be well characterized as we work through the various facets of its validation.
    Keywords: Earth Resources and Remote Sensing
    Type: 11th Conference on Polar Meteorology and Oceanography; May 02, 2011 - May 05, 2011; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...