ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-13
    Description: Under NASA's Earth Science Technology Program, a novel mission concept has been developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit: "NEXRAD in Space" (NIS). By operating in the Geostationary Earth Orbit (GEO), NIS would enable rapid-update sampling (less than or equal to 1 hour cadence) of three dimenional fields of 35 GHz (Ka-band) radar reflectivity factor (Z) and line-of-sight Doppler velocity (VD) profiles, at mesoscale horizontal resolutions (approx. 10 km) over a circular Earth region of approximately 5300 km in diameter (equivalent to much of an oceanic basin, such as the Atlantic). NIS GEO-radar concept was chosen as one of only four potential post-2020 missions for the Weather Focus area in the 2007-2016 NASA Science Mission Directorate (SMD) Science Plan. The results of the first project aiming at developing the NIS concept highlighted the enormous potential of such mission, and the technological challenges presented by it. In essence, it is because of its rapid-cadence capability that NIS science planning is focusing on hurricane monitoring and prediction. Hurricanes, or generically tropical cyclones (TCs), have always been among the most devastating natural phenomena. This has been painfully reiterated in recent years with a number of powerful TCs landfalling in North America and elsewhere. In April 2007, the first NIS Science Workshop was convened at the University of Miami to galvanize the scientific community's interest in NIS's measurement capabilities for improved TC monitoring and prediction. The general consensus of the workshop was that a GEO Doppler radar would provide a major breakthrough in regards to the observation of TCs, and, when combined with cloud-resolving numerical weather prediction (NWP) models. This paper presents brief summaries of the instrument concept, the current technology status, the anticipated impacts on hurricane monitoring and model prediction, and the future science and technology roadmap.
    Keywords: Meteorology and Climatology
    Type: Advanced RF Sensors and Remote Sensing Instruments (ARSI); Sep 13, 2011 - Sep 15, 2011; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-17
    Description: Global rainfall is the primary distributor of latent heat through atmospheric circulation. The recently launched Tropical Rainfall Measuring Mission satellite is dedicated to advance our understanding of tropical precipitation patterns and their implications on global climate and its change. The Precipitation Radar (PR) aboard the satellite is the first radar ever flown in space and has provided. exciting, new data on the 3-D rain structures for a variety of scientific uses. However, due to the limited mission lifetime and the dynamical nature of precipitation, the TRMM PR data acquired cannot address all the issues associated with precipitation, its related processes, and the long-term climate variability. In fact, a number of new post-TRMM mission concepts have emerged in response to the recent NASA's request for new ideas on Earth science missions at the post 2002 era. This paper will discuss the system concepts for two advanced, spaceborne rainfall profiling radars. In the first portion of this paper, we will present a system concept for a second-generation spaceborne precipitation radar for operations at the Low Earth Orbit (LEO). The key PR-2 electronics system will possess the following capabilities: (1) A 13.6/35 GHz dual frequency radar electronics that has Doppler and dual-polarization capabilities. (2) A large but light weight, dual-frequency, wide-swath scanning, deployable antenna. (3) Digital chirp generation and the corresponding on-board pulse compression scheme. This will allow a significant improvement on rain signal detection without using the traditional, high-peak-power transmitters and without sacrificing the range resolution. (4) Radar electronics and algorithm to adaptively scan the antenna so that more time can be spent to observe rain rather than clear air. and (5) Built-in flexibility on the radar parameters and timing control such that the same radar can be used by different future rain missions. This will help to reduce the overall instrument development costs. In the second portion of this paper, we will present a system concept for a geostationary rainfall monitoring radar for operations at the geosynchronous Earth Orbit (GEO). In particular, the science requirements, the observational strategy, the instrument design, and the required technologies will be discussed.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-17
    Description: This paper studies the performance of a spaceborne precipitation radar in measuring vertical Doppler velocity of rainfall. As far as a downward pointing precipitation radar is concerned, one of the major problems affecting Doppler measurement at the nadir direction arises from the Non-Uniform Beam-Filling effect (NUBF). That is, when significant variation in rain rate is present within the radar IFOV (Instrument Field of View) in the along track direction. the Doppler shift caused by the radial component of the horizontal speed of the satellite is weighted differently among the portions of IFOV. The effects of this non-uniform weighting may dominate any other contribution. Under this condition, shape, average value and width of the Doppler spectrum may not be directly correlated with the vertical velocity of the precipitating particles. However, by using an inversion technique which over-samples the radar measurements in the along track direction, we show that the shift due to NUBF can be evaluated, and that the NUBF induced errors on average fall speed can be reduced.
    Keywords: Meteorology and Climatology
    Type: Microwave Remote Sensing of the Atmosphere and Environment II; 4152; 13-24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-17
    Description: Global rainfall is the primary redistributor of earth's energy by the process of latent heat release. This forms the main driving force for the tropical circulation, which in turn impacts the global circulation .through transient events-such as El Nino. Hence, more precise and long-term time series of the rainfall and its variability is crucial to the understanding and prediction of the global climate and climate change. The Precipitation Radar (PR) abroad the US/Japan Tropical Rainfall Measuring Mission (TRMM) is the first radar ever launched into space that measures detailed vertical profiles of rain intensity over the tropics. One of the challenges in estimating rainfall from spaceborne radars is the presence of attenuation at frequencies, such as 14 GHz of the TRMM PR and future planned systems at this and higher frequencies. A common approach in current rainfall retrieval algorithms is to employed the path integrated attenuation (PIA) as a constraint to the retrieval, and hence overcome errors in the radar calibration or in the assumed rainfall parameters. PIA can either be derived from a radiometer or from the surface reference technique, in which a clear air radar measurement is compared with the measurement in the raining area. The current TRMM 2A21 PIA data product makes use of both a temporal and spatial clear air database for comparison to rainy measurements. In this paper we present results from analysis of TRMM surface backscatter cross-section (sigmaO) measurements from Nov 97-Feb99, and a comparison with sigmaO measurements obtained by the NASA Scatterometer (NSCAT) between Sept96-June97. Measurements for a given month from both instruments are compiled on a 1 deg. (lat.) x 1 deg. (lon.) x 1 hr. grid. This enables TRMM--NSCAT comparison and the investigation of seasonal and diurnal trends in both data sets. From preliminary analysis of TRMM sigmaO's we have decided not to treat the ocean as a single homogeneous region but to select a number of ocean sub-regions and individually analyze their trends. Likewise, and in a similar approach to previous studies of Seasat over-land data, we have selected a number of over-land regions for study. From said sigmaO maps and regional trend analysis we investigate possible sources of trends and variability. In addition, we study the effects of TRMM PR sensitivity through the PR "possible rain" class. Given NSCAT's inability to flag rain contaminated measurements we are able to gauge the impact of rain contamination on NSCAT monthly sigmaO maps, using TRMM measurements. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA), U.S.A.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: NASA is currently developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with an over-arching objective of making such instruments more capable in supporting future science needs and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a realtime digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while consuming only a fraction of the mass of the current TRMM Precipitation Radar (PR). NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar for providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall.
    Keywords: Meteorology and Climatology
    Type: 7th International Symposium on Tropospheric Profiling : Needs and Technology (ISTP); Jun 11, 2006 - Jun 17, 2006; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: A novel 35-GHz Doppler radar instrument concept and the associated critical technologies are being developed for detailed monitoring of hurricanes and severe storms from a geostationary orbit. This instrument is designed to make quantitative rainfall rate profiling measurements at 13-km horizontal resolution and 300-m vertical resolution, and the radial Doppler velocity at 0.3 m/s precision, of the 3-D hurricane structure once per hour throughout its life cycle.
    Keywords: Earth Resources and Remote Sensing
    Type: International Symposium of Remote Sensing of Environment; Nov 10, 2003 - Nov 14, 2003; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Knowledge of the global distribution of the vertical velocity of precipitation is important in in the study of energy transportation in the atmosphere, the climate and weather. Such knowledge can only be directly acquired with the use of spaceborne Doppler precipitation radars. Although the high relative speed of the radar with respect to the rainfall particles introduces significant broadening in the Doppler spectrum, recent studies have shown that the average vertical velocity can be measured to acceptable accuracy levels by appropriate selection of radar parameters. Furthermore, methods to correct for specific errors arising from NUBF effects and pointing uncertainties have recently been developed. In this paper we will present the results of the trade studies on the performances of a spaceborne Doppler radar with different system parameters configurations.
    Keywords: Meteorology and Climatology
    Type: SPIE Remote Sensing of the Atmosphere, Environment, and Space; Nov 08, 2007 - Nov 12, 2007; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: The NEXRAD in Space project develops a novel instrument concept and the associated antenna technologies for a 35-GHz Doppler radar to monitor hurricanes, cyclones, and severe storms from a geostationary orbit. Mechanical challenges of this concept include a 35-m diameter lightweight in space deployable spherical reflector and a feeder scanning mechanism. The feasibility of using shape memory polymer material to develop the large deployable reflector has been investigated by this study. A spiral scanning mechanism concept has been developed and demonstrated by an engineering model.
    Keywords: Meteorology and Climatology
    Type: 6th Annual Earth Science Technology Conference University of Maryland; Jun 26, 2006; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Radar data obtained through the NASA/JPL Airborne Precipitation Radar APR-2 during the Wakasa Bay Experiment in January/February 2003 were processed to obtain calibrated reflectivity measurements, rainfall/snowfall velocity measurements, classification of the surface type and detection of the boundaries of the melting layer of precipitation. In this paper the processing approach is described together with an overview of the resulting data quality and known issues.
    Keywords: Meteorology and Climatology
    Type: IEEE International Topical Meeting on Geoscience and Remote Sensing Symposium, IGARSS ''04; Sep 20, 2004 - Sep 24, 2004; Anchorage, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-12
    Description: An algorithm has been devised to reduce ground clutter in the data products of the CloudSat Cloud Profiling Radar (CPR), which is a nadir-looking radar instrument, in orbit around the Earth, that measures power backscattered by clouds as a function of distance from the instrument. Ground clutter contaminates the CPR data in the lowest 1 km of the atmospheric profile, heretofore making it impossible to use CPR data to satisfy the scientific interest in studying clouds and light rainfall at low altitude. The algorithm is based partly on the fact that the CloudSat orbit is such that the geodetic altitude of the CPR varies continuously over a range of approximately 25 km. As the geodetic altitude changes, the radar timing parameters are changed at intervals defined by flight software in order to keep the troposphere inside a data-collection time window. However, within each interval, the surface of the Earth continuously "scans through" (that is, it moves across) a few range bins of the data time window. For each radar profile, only few samples [one for every range-bin increment ((Delta)r = 240 m)] of the surface-clutter signature are available around the range bin in which the peak of surface return is observed, but samples in consecutive radar profiles are offset slightly (by amounts much less than (Delta)r) with respect to each other according to the relative change in geodetic altitude. As a consequence, in a case in which the surface area under examination is homogenous (e.g., an ocean surface), a sequence of consecutive radar profiles of the surface in that area contains samples of the surface response with range resolution (Delta)p much finer than the range-bin increment ((Delta)p 〈〈 r). Once the high-resolution surface response has thus become available, the profile of surface clutter can be accurately estimated by use of a conventional maximum-correlation scheme: A translated and scaled version of the high-resolution surface response is fitted to the observed low-resolution profile. The translation and scaling factors that optimize the fit in a maximum-correlation sense represent (1) the true position of the surface relative to the sampled surface peak and (2) the magnitude of the surface backscatter. The performance of this algorithm has been tested on CloudSat data acquired over an ocean surface. A preliminary analysis of the test data showed a surface-clutter-rejection ratio over flat surfaces of 〉10 dB and a reduction of the contaminated altitude over ocean from about 1 km to about 0.5 km (over the ocean). The algorithm has been embedded in CloudSat L1B processing as of Release 04 (July 2007), and the estimated flat surface clutter is removed in L2B-GEOPROF product from the observed profile of reflectivity (see CloudSat product documentation for details and performance at http://www.cloudsat.cira.colostate.edu/ dataSpecs.php?prodid=1).
    Keywords: Meteorology and Climatology
    Type: NPO-44873 , NASA Tech Briefs, December 2008; 6-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...