ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (1)
  • Instrumentation and Photography; Meteorology and Climatology  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-08-15
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: JPL-CL-16-1573 , AIRS Science Team Meeting; Mar 22, 2016; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A change in climate is not likely captured from any single instrument, since no single instrument can span decades of time. Therefore, to detect signals of global climate change, observations from many instruments on different platforms have to be concatenated. This requires careful and detailed consideration of instrumental differences such as footprint size, diurnal cycle of observations, and relative biases in the spectral brightness temperatures. Furthermore, a common basic assumption is that the data quality is independent of the observed scene and therefore can be determined using clear scene data. However, as will be demonstrated, this is not necessarily a valid assumption as the globe is mostly cloudy. In this study we highlight challenges in inter-calibration and concatenation of infrared radiances from multiple instruments by focusing on the analysis of deep convective or anvil clouds. TRMM/VIRS is potentially useful instrument to make correction for observational differences in the local time and foot print sizes, and thus could be applied retroactively to vintage instruments such as AIRS, IASI, IRIS, AVHRR, and HIRS. As the first step, in this study, we investigate and discuss to what extent AIRS and VIRS agree in capturing deep cloudy radiances at the same local time. The analysis also includes comparisons with one year observations from CrIS. It was found that the instruments show calibration differences of about 1K under deep cloudy scenes that can vary as a function of land type and local time of observation. The sensitivity of footprint size, view angle, and spectral band-pass differences cannot fully explain the observed differences. The observed discrepancies can be considered as a measure of the magnitude of issues which will arise in the comparison of legacy data with current data.
    Keywords: Instrumentation and Photography; Meteorology and Climatology
    Type: SPIE 2013 Photonics Conference on EOS Observing Systems; Aug 26, 2013 - Aug 29, 2013; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...