ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-11
    Description: The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), launched on 18 December 1999 aboard the Terra spacecraft, are making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical depths and particle properties are independently retrieved from these radiances using methodologies and algorithms that make use of the instruments corresponding designs. This paper compares instantaneous optical depths retrieved from simultaneous and collocated radiances measured by the two instruments at locations containing sites within the Aerosol Robotic Network (AERONET). A set of 318 MISR and MODIS images, obtained during the months of March, June, and September 2002 at 62 AERONET sites, were used in this study. The results show that over land, MODIS aerosol optical depths at 470 and 660 nm are larger than those retrieved from MISR by about 35% and 10% on average, respectively, when all land surface types are included in the regression. The differences decrease when coastal and desert areas are excluded. For optical depths retrieved over ocean, MISR is on average about 0.1 and 0.05 higher than MODIS in the 470 and 660 nm bands, respectively. Part of this difference is due to radiometric calibration and is reduced to about 0.01 and 0.03 when recently derived band-to-band adjustments in the MISR radiometry are incorporated. Comparisons with AERONET data show similar patterns.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; Volume 110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: Models that assess aerosol effects on regional air quality and global climate parameterize aerosol sources in terms of amount, type, and injection height. The multiangle imaging spectroradiometer (MISR) aboard NASA's Terra satellite retrieves total column aerosol optical thickness (AOT), and aerosol type over cloud-free land and water. A stereo-matching algorithm automatically retrieves reflecting-layer altitude wherever clouds or aerosol plumes have discernable spatial contrast, with about 500-m accuracy, at 1.1-km horizontal resolution. Near-source biomass burning smoke, volcanic effluent, and desert dust plumes are observed routinely, providing information about aerosol amount, particle type, and injection height useful for modeling applications. Compared to background aerosols, the plumes sampled have higher AOT, contain particles having expected differences in Angstrom exponent, size, single-scattering albedo, and for volcanic plume and dust cloud cases, particle shape. As basic thermodynamics predicts, thin aerosol plumes lifted only by regional winds or less intense heat sources are confined to the boundary layer. However, when sources have sufficient buoyancy, the representative plumes studied tend to concentrate within discrete, high-elevation layers of local stability; the aerosol is not uniformly distributed up to a peak altitude, as is sometimes assumed in modeling. MISR-derived plume heights, along with meteorological profile data from other sources, make it possible to relate radiant energy flux observed by the moderate resolution imaging spectroradiometer (MODIS), also aboard the Terra spacecraft, to convective heat flux that plays a major role in buoyant plume dynamics. A MISR climatology of plume behavior based on these results is being developed.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; Volume 112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD), and gives a much less favorable impression of the utility of the satellite products than that presented by the instrument teams and other groups. We trace the reasons for the differing pictures to whether known and previously documented limitations of the products are taken into account in the assessments. Specifically, the analysis approaches differ primarily in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account. Mishchenko et al. also do not distinguish between observational sampling differences and retrieval algorithm error. We assess the implications of the different analysis approaches, and cite examples demonstrating how the MISR and MODIS aerosol products have been applied successfully to a range of scientific investigations.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Quantitative Spectroscopy and Radiative Transfer (ISSN 0022-4073); Volume 112; Issue 5; 901-909
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-05
    Description: In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.
    Keywords: Earth Resources and Remote Sensing
    Type: Geoscience and Remote Sensing (ISSN 0196-2892); Volume 47; Issue 12; 4095-4114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Multi-angle Imaging SpectroRadiometer (MISR) provides a unique, independent source of data for studying dust emission and transport. MISR's multiple view angles allow the retrieval of aerosol properties over bright surfaces, and such retrievals have been shown to be sensitive to the non-sphericity of dust aerosols over both land and water. MISR stereographic views of thick aerosol plumes allow height and instantaneous wind derivations at spatial resolutions of better than 1.1 km horizontally and ~200m vertically. We will discuss the radiometric and stereo-retrieval capabilities of MISR specifically for dust, and demonstrate the use of MISR data in conjunction with other available satellite observations for dust property characterization and climate studies.First, we will discuss MISR non-spherical (dust) fraction product over the global oceans. We will show that over the Atlantic Ocean, changes in the MISR-derived non-spherical AOD fraction illustrate the evolution of dust during transport. Next, we will present a MISR satellite perspective on dust climatology in major dust source regions with a particular emphasis on the West Africa and Middle East and discuss MISR's unique strengths as well as current product biases. Finally, we will discuss MISR dust plume product and climatological applications.
    Keywords: Earth Resources and Remote Sensing
    Type: Lecture College of Health Science; Nov 19, 2012; Kuwait City; Kuwait
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: AERO-SAT is an international consortium of experts on aerosol remote sensing from ground and space. This initiative was established in 2013 (1) to accelerate the exchange of ideas and concepts and (2) to elevate the capabilities of satellite sensorsretrieval (aerosol) products, which are needed to constrain aerosol processing in and assist in evaluations of global modeling. The main goal of the meeting is to substantiate and invigorate the five AEROSAT working groups. On each of those five topics dedicated working groups are building up and will report on their initial activities followed by further related presentations and ample time for discussions. Organizers of the meeting held September 27-28, 2014 would like to post the presentations to a website.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN19449 , 2014 AEROSAT Meeting; Sep 27, 2014 - Sep 28, 2014; Steamboat Springs, Colorado; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN19448 , AEROCOM; Sep 29, 2014 - Oct 03, 2014; Steamboat Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) fine mode fraction and Multi-angle Imaging SpectroRadiometer (MISR) nonspherical fraction data are used to derive dust and smoke aerosol optical thickness (T(sub dust) and T(sub smoke)) over the tropical Atlantic in a complementary way: due to its wider swath, MODIS has 3-4 times greater sampling than MISR, but MISR dust discrimination is based on particle shape retrievals, whereas an empirical scheme is used for MODIS. MODIS and MISR show very similar dust and smoke winter climatologies. T(sub dust) is the dominant aerosol component over the tropical Atlantic, accounting for 40-70 percent of the total aerosol optical thickness (AOT), whereas T(sub smoke) is significantly smaller than T(sub dust). The consistency and high correlation between these climatologies and their daily variations lends confidence to their use for investigating the relative dust and smoke contributions to the total AOT variation associated with the Madden-Julian Oscillation (MJO). The temporal evolution and spatial patterns of the dus anomalies associated with the MJO are consistent between MODIS and MISR: the magnitude of MJO-realted T(sub dust) anomalies is comparable to or even larger than that of the total T, while the T(sub smoke) anomaly represents about 15 percent compared to the total, which is quite different from their relative magnitudes to the total T on the climatological time scale. This suggests that dust and smoke are not influenced by the MJO in the same way. Based on correlation analysis, dust is strongly influenced by the MJO-modulated trade wind and precipitation anomalies, and can last as long as one MJO phase, whereas smoke is less affected.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN8698 , Journal of Geophysical Research: Atmospheres; 118; 10; 4947-4963
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In response to our article, Why Hasnt Earth Warmed as Much as Expected? (2010), Knutti and Plattner (2012) wrote a rebuttal. The term climate sensitivity is usually defined as the change in global mean surface temperature that is produced by a specified change in forcing, such as a change in solar heating or greenhouse gas concentrations. We had argued in the 2010 paper that although climate models can reproduce the global mean surface temperature history over the past century, the uncertainties in these models, due primarily to the uncertainty in climate forcing by airborne particles, mean that the models lack the confidence to actually constrain the climate sensitivity within useful limits for climate prediction. Knutti and Plattner are climate modelers, and they argued essentially that because the models could reproduce the surface temperature history, the issue we raised was moot. Our response amounts to straightening out this confusion; for the models to be constraining, they must be able to reproduce the surface temperature history with sufficient confidence, not just to match the measurements, but to exclude alternative histories. As before, we concluded that if we can actually make the aerosol measurements using currently available, state-of-the-art techniques, we can determine the aerosol climate forcing to the degree required to constrain that aspect of model climate sensitivity. A technical issue relating to the timescale over which a change in CO2 emissions would be equilibrated in the environmental energy balance was also discussed, again, a matter of differences in terminology.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN9022 , Journal of Climate; 25; 6; 2200-2204
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: As atmospheric reflectance dominates top-of-the-atmosphere radiance over ocean, atmospheric correction is a critical component of ocean color retrievals. This paper explores the operational Sea-viewing Wide Field-of-View Sensor (SeaWiFS) algorithm atmospheric correction with approximately 13 000 coincident surface-based aerosol measurements. Aerosol optical depth at 440 nm (AOD(sub 440)) is overestimated for AOD below approximately 0.1-0.15 and is increasingly underestimated at higher AOD; also, single-scattering albedo (SSA) appears overestimated when the actual value less than approximately 0.96.AOD(sub 440) and its spectral slope tend to be overestimated preferentially for coarse-mode particles. Sensitivity analysis shows that changes in these factors lead to systematic differences in derived ocean water-leaving reflectance (Rrs) at 440 nm. The standard SeaWiFS algorithm compensates for AOD anomalies in the presence of nonabsorbing, medium-size-dominated aerosols. However, at low AOD and with absorbing aerosols, in situ observations and previous case studies demonstrate that retrieved Rrs is sensitive to spectral AOD and possibly also SSA anomalies. Stratifying the dataset by aerosol-type proxies shows the dependence of the AOD anomaly and resulting Rrs patterns on aerosol type, though the correlation with the SSA anomaly is too subtle to be quantified with these data. Retrieved chlorophyll-a concentrations (Chl) are affected in a complex way by Rrs differences, and these effects occur preferentially at high and low Chl values. Absorbing aerosol effects are likely to be most important over biologically productive waters near coasts and along major aerosol transport pathways. These results suggest that future ocean color spacecraft missions aiming to cover the range of naturally occurring and anthropogenic aerosols, especially at wavelengths shorter than 440 nm, will require better aerosol amount and type constraints.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN35098 , Journal of Atmospheric & Oceanic Technology (e-ISSN 1520-0426); 33; 6; 1185-1209
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...