ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The tongue of the Pasterze Glacier in the eastern Alps of Austria receded more than 1152 m from 1880 to 2001. Landsat and Ikonos satellite data from 1976 to 2001, topographic maps beginning in 1893 and ground measurements were studied. Results show that though satellite images significantly underestimate the width of the Pasterze Glacier tongue due to the presence of morainal material on the surface, they provide an excellent way to measure the recession of the exposed-ice part of the glacier tongue. The rate of change of the terminus as determined using satellite data is found to compare well with ground measurements. Between 1976 and 2001, Landsat-derived measurements show a recession of the terminus of the Pasterze Glacier of 479+/-113 m (at an average rate of 18.4 m a(exp -1) while measurements from the ground showed a recession of 428 m (at an average recession of 17.1 m a(exp -1). Ikonos satellite images from 2000 and 2001 reveal changes in the exposed ice part of the Pasterze tongue, and a decrease in area of the exposed ice part of the tongue of 22,096 sq m. GPS points and a ground survey of the glacier terminus in August 2001 were plotted on a 1-m resolution Ikonos image, and showed the actual terminus shape and location. The nearby Kleines Fleisskees glacier lost 30% of its area between 1984 and 2001, and the area of exposed ice increased by 0.44 sq km, according to Landsat satellite measurements. Recession of both the Pasterze and the Kleines Fleisskees corresponds generally to temperature and precipitation trends, especially increasing summer temperatures, as determined from meteorological data acquired from the Sonnblick Observatory, however the smaller the Kleines FleiSkees reacts more quickly to climate changes than does the Pasterze Glacier.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Differencing of digital satellite image pairs highlights subtle changes in near-identical scenes of Earth surfaces. Using the mathematical relationships relevant to photoclinometry, we examine the effectiveness of this method for the study of localized ice sheet surface topography changes using numerical experiments. We then test these results by differencing images of several regions in West Antarctica, including some where changes have previously been identified in altimeter profiles. The technique works well with coregistered images having low noise, high radiometric sensitivity, and near-identical solar illumination geometry. Clouds and frosts detract from resolving surface features. The ETM(plus) sensor on Landsat-7, ALI sensor on EO-1, and MODIS sensor on the Aqua and Terra satellite platforms all have potential for detecting localized topographic changes such as shifting dunes, surface inflation and deflation features associated with sub-glacial lake fill-drain events, or grounding line changes. Availability and frequency of MODIS images favor this sensor for wide application, and using it, we demonstrate both qualitative identification of changes in topography and quantitative mapping of slope and elevation changes.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.4626.2011 , Remote Sensing of Environment (ISSN 0034-4257); 114; 7; 1353-1362
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: Seven discipline review papers are presented on the state of the knowledge of West Antarctica and opinions on how that knowledge must be increased to predict the future behavior of this ice sheet and to assess its potential to collapse, rapidly raising the global sea level. These are the goals of the West Antarctic Ice Sheet Initiative (WAIS).
    Keywords: GEOSCIENCES (GENERAL)
    Type: NASA-CP-3115-VOL-2 , REPT-91A01040-VOL-2 , NAS 1.55:3115-VOL-2 , Oct 16, 1990 - Oct 18, 1990; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Science and Implementation Plan of the West Antarctic Ice Sheet Initiative (WAIS) is described. The goal of this initiative is the prediction of the future behavior of this ice sheet and an assessment of its potential to collapse, rapidly raising global sea level. The multidisciplinary nature of WAIS reflects the complexity of the polar ice sheet environment. The project builds upon past and current polar studies in many fields and meshes with future programs of both the U.S. and other countries. Important tasks in each discipline are described and a coordinated schedule by which the majority of these tasks can be accomplished in 5 years is presented. The companion report (Volume 2) contains seven discipline review papers on the state of knowledge of Antarctica and opinions on how that knowledge must be increased to attain the WAIS goal.
    Keywords: GEOSCIENCES (GENERAL)
    Type: NASA-CP-3115-VOL-1 , REPT-91A01040-VOL-1 , NAS 1.55:3115-VOL-1 , Oct 16, 1990 - Oct 18, 1990; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The results of a workshop held to discuss the role of the polar ice sheets in global climate change are reported. The participants agreed that the most important aspect of the ice sheets' involvement in climate change is the potential of marine ice sheets to cause a rapid change in global sea level. To address this concern, a research initiative is called for that considers the full complexity of the coupled atmosphere-ocean-cryosphere-lithosphere system. This initiative, called SeaRISE (Sea-level Response to Ice Sheet Evolution) has the goal of predicting the contribution of marine ice sheets to rapid changes in global sea level in the next decade to few centuries. To attain this goal, a coordinated program of multidisciplinary investigations must be launched with the linked objectives of understanding the current state, internal dynamics, interactions, and history of this environmental system. The key questions needed to satisfy these objectives are presented and discussed along with a plan of action to make the SeaRISE project a reality.
    Keywords: GEOSCIENCES (GENERAL)
    Type: NASA-CP-3075 , REPT-90-077 , NAS 1.55:3075 , Jan 23, 1990 - Jan 25, 1990; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...