ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing; Space Communications, Spacecraft Communications, Command and Tracking  (1)
  • 1
    Publication Date: 2019-07-13
    Description: This paper describes trends in the Suomi National Polar-orbiting Partnership (SNPP) spacecraft ephemeris data over the four and half years of on-orbit operations. It then discusses the implications of these trends on the geometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS), one of the instruments onboard SNPP. The SNPP ephemeris data includes time stamped spacecraft positions and velocities that are used to calculate the spacecraft altitude and sub-satellite locations. Through drag make-up maneuvers (DMUs) the orbital mean altitude (spacecraft altitude averaged over an orbit) has been maintained at 838.8 kilometers to within plus or minus 0.2 kilometers and the orbital period at 101.5 minutes to within plus or minus 0.2 seconds. The corresponding orbital mean velocity in the terrestrial frame of reference has been maintained at 7524 meters per second to within plus or minus 0.5 meters per second. Within an orbit, the altitude varies from 828 kilometers near 15 degrees North latitude to 856 kilometers near the South Pole. Inclination adjust maneuvers (IAMs) have maintained the orbit inclination angle at 98.67 degrees to within plus or minus 0.07 degrees and the sun-synchronous local time at ascending node (LTAN) at 13:28 to within plus or minus 5 minutes. Besides these trends, it is interesting to observe that the orbit's elliptic shape has its major axis linking the perigee and apogee shorter than the line linking the ascending node and the descending node. This effect is caused by the Earth's oblate spheroid shape and deviates from a Keplerian orbit theory in which the two orbiting bodies are point masses. VIIRS has 5 imagery resolution bands, 16 moderate resolution bands and a day-night band, with 32, 16 and 16 detectors, respectively, aligned in the spacecraft flight (also known as track) direction. For each band's sample within a scan, the detectors sample the Earth's surface simultaneously in the track direction in the Earth Centered Inertial frame of reference. The distance between the center of the area sensed by the trailing detectors of one scan and the leading detectors of the next includes a component caused by earth rotation. This earth rotation component is relatively small (approximately 70 meters per second) for an orbit like SNPP, but must be taken into account in the design of low-Earth orbit scanning sensors similar to VIIRS to ensure contiguous coverage at nadir.
    Keywords: Earth Resources and Remote Sensing; Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC-E-DAA-TN40739 , SPIE Optics and Photonics 2016; Aug 28, 2016 - Sep 01, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...