ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: Space lidars provides a unique and powerful tool in earth environment monitoring and planetary exploration. Lidars operate at a much shorter wavelength than radars and can have a much narrower beam and much smaller transmitter and receiver. Lidars carry their own light sources and can continue measurement day and night, and over polar regions, where the passive instruments cannot observe. NASA Goddard Space Flight Center (GSFC) has developed several space lidars, three of them on planetary missions. These were the Mars Orbiter Laser Altimeter (MOLA) on the Mars Observer and Mars Global Surveyor missions, the Mercury Laser Altimeter (MLA) on the MErcury Surface Space ENvironment, GEochemistry and Ranging (MESSENGER) mission and the Lunar Orbital Laser Altimeter (LOLA) on the Lunar Reconnaissance (LRO) mission. These lidars all use similar technologies but with major improvement from one instrument In the next in size, power, measurement capability and operating environment.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC.OVPR.00389.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC-E-DAA-TN26210 , Proceedings of SPIE; 8610; 861003|Free-Space Laser Communication and Atmospheric Propagation; Feb 05, 2013 - Feb 07, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: NASAs Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of Earths ice sheet elevations, sea-ice thickness and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to Earths surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode (SiAPD) and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than planned, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as 50 cm for ice and snow-covered surfaces. We developed a correction for this saturation range bias based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates to those derived from Global Positioning System (GPS) surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet.
    Keywords: Earth Resources and Remote Sensing; Numerical Analysis
    Type: GSFC-E-DAA-TN43299 , IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892) (e-ISSN 1558-0644); 55; 10; 5440-5454
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...