ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing; Meteorology and Climatology  (1)
  • 1
    Publication Date: 2019-06-26
    Description: This study uses a neural network model trained with in situ data, combined with satellite data and hydrodynamic model products, to compute the daily estuarine export of dissolved organic carbon (DOC) at the mouths of Chesapeake Bay (CB) and Delaware Bay (DB) from 2007 to 2011. Both bays show large flux variability with highest fluxes in spring and lowest in fall as well as interannual flux variability (0.18 and 0.27 Tg C/year in 2008 and 2010 for CB; 0.04 and 0.09 Tg C/year in 2008 and 2011 for DB). Based on previous estimates of total organic carbon (TOCexp) exported by all Mid-Atlantic Bight estuaries (1.2 Tg C/year), the DOC export (CB + DB) of 0.3 Tg C/year estimated here corresponds to 25% of the TOCexp. Spatial and temporal covariations of velocity and DOC concentration provide contributions to the flux, with larger spatial influence. Differences in the discharge of fresh water into the bays (74 billion m(exp3)/year for CB and 21 billion m9exp3)/year for DB) and their geomorphologies are major drivers of the differences in DOC fluxes for these two systems. Terrestrial DOC inputs are similar to the export of DOC at the bay mouths at annual and longer time scales but diverge significantly at shorter time scales (days to months). Future efforts will expand to the Mid-Atlantic Bight and Gulf of Maine, and its major rivers and estuaries, in combination with coupled terrestrial-estuarine-ocean biogeochemical models that include effects of climate change, such as warming and CO2 increase.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN69984 , Journal of Geophysical Research, Oceans (ISSN 0148-0227) (e-ISSN 2156-2202)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...