ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth's magnetospheric dynamics  (1)
  • Nonlinear Sciences - Chaotic Dynamics; Nonlinear Sciences - Chaotic Dynamics  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-07-23
    Description: Understanding the complex behavior of the near-Earth electromagnetic environment is one of the main challenges of Space Weather studies. This includes both the correct characterization of the different physical mechanisms responsible for its configuration and dynamics as well as the efforts which are needed for a correct forecasting of several phenomena. By using a nonlinear multi-scale dynamical systems approach, we provide here new insights into the scale-to-scale dynamical behavior of both quiet and disturbed periods of geomagnetic activity. The results show that a scale-dependent dynamical transition occurs when moving from short to long timescales, i.e., from fast to slow dynamical processes, the latter being characterized by a more regular behavior, while more dynamical anomalies are found in the behavior of the fast component. This suggests that different physical processes are typical for both dynamical regimes: the fast component, being characterized by a more chaotic and less predictable behavior, can be related to the internal dynamical state of the near-Earth electromagnetic environment, while the slow component seems to be less chaotic and associated with the directly driven processes related to the interplanetary medium variability. Moreover, a clear difference has been found between quiet and disturbed periods, the former being more complex than the latter. These findings support the view that, for a correct forecasting in the framework of Space Weather studies, more attention needs to be devoted to the identification of proxies describing the internal dynamical state of the near-Earth electromagnetic environment.
    Description: Published
    Description: 25
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: Earth's magnetospheric dynamics ; geomagnetic storms and substorms ; empirical mode decomposition ; geomagnetic indices ; 04.05. Geomagnetism ; 01.03. Magnetosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-30
    Description: 9 pages, 6 figures
    Description: Many natural systems show emergent phenomena at different scales, leading to scaling regimes with signatures of deterministic chaos at large scales and an apparently random behavior at small scales. These features are usually investigated quantitatively by studying the properties of the underlying attractor, the compact object asymptotically hosting the trajectories of the system with their invariant density in the phase space. This multi-scale nature of natural systems makes it practically impossible to get a clear picture of the attracting set. Indeed, it spans over a wide range of spatial scales and may even change in time due to non-stationary forcing. Here, we combine an adaptive decomposition method with extreme value theory to study the properties of the instantaneous scale-dependent dimension, which has been recently introduced to characterize such temporal and spatial scale-dependent attractors in turbulence and astrophysics. To provide a quantitative analysis of the properties of this metric, we test it on the well-known low-dimensional deterministic Lorenz-63 system perturbed with additive or multiplicative noise. We demonstrate that the properties of the invariant set depend on the scale we are focusing on and that the scale-dependent dimensions can discriminate between additive and multiplicative noise despite the fact that the two cases have exactly the same stationary invariant measure at large scales. The proposed formalism can be generally helpful to investigate the role of multi-scale fluctuations within complex systems, allowing us to deal with the problem of characterizing the role of stochastic fluctuations across a wide range of physical systems.
    Description: Published
    Description: 023144
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Keywords: Nonlinear Sciences - Chaotic Dynamics; Nonlinear Sciences - Chaotic Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...