ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 262 (1984), S. 734-746 
    ISSN: 1435-1536
    Keywords: Microstructure ; nafion ; ionomer ; EXAFS ; XANES
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) experiments have been carried out to probe the Zn2+ and Rb+ environment in perfluorinated ionomers. The cation environment has been determined for these ionomers in their dry, hydrated and n-amyl alcohol swollen state. It was found that a well ordered, crystalline-like nearest-neighbor oxygen shell predominates in the zinc neutralized perfluorinated ionomers. Unlike the zinc ionomers, the Rb+ neutralized ionomers show no discernible peaks in the radial structure function indicating that the rubidium environment is highly disordered. Coordination of the hydroxyl groups of namyl alcohol to cations was suggested by EXAFS analysis. XANES analysis was useful in corroborating the EXAFS information and in providing information about the ionic character of the nearest-neighbor bonding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 32 (1994), S. 2357-2366 
    ISSN: 0887-6266
    Keywords: metal acetates ; polyurethanes ; pyridine units ; blending ; SAXS ; EXAFS ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Polyurethanes containing pendant pyridine units were blended with various metal acetates and studied by small-angle x-ray scattering (SAXS) and extended x-ray absorption fine structure spectroscopy (EXAFS) to better understand the microscopic effect of blending on these materials. An earlier investigation found a dramatic enhancement in mechanical properties after blending, which suggests at least two pyridine units were coordinating to a single cation. This coordination would enable the cation to act as a cross-linking site, which could then cause the observed changes in mechanical properties. To determine the effect of complexation on the microphase-separated domain structure, small-angle x-ray scattering patterns were collected. Neutralization with a metal acetate increased the scattered intensity, which can be explained by an increase in electron density contrast but may also have been due to an improvement in phase separation. The distance between lamellar domains was basically unaffected by the addition of metal acetate, with the exception of nickel acetate. In this instance the distance decreased, which was caused by an improvement of packing inside the hard segments. EXAFS at the nickel and zinc edges indicated that the same qualitative changes occurred in the local environments around both cations after blending versus the unblended acetates. The magnitude of the first shell peak in the radial structure function (RSF) increased significantly upon blending, a result that is difficult to rationalize. The higher shell peaks exhibited significant changes in position and magnitude upon blending, which indicates substantial local rearrangement around the metal cation These fundamental changes in the EXAFS spectra may have been due to complexation between the cation and the pyridine group, but the results were not conclusive. © 1994 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...