ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-02-11
    Description: Abstract
    Description: Here we report the raw data of the friction experiments carried out on basalt-built simulated faults defined by rock-on-rock contacts and powdered gouge. The experiments were specifically designed to investigate the role of fault microstructure on the frictional properties of basalts and the fault slip stability, and were conducted with the rotary-shear apparatus (SHIVA) and the biaxial deformation apparatus (BRAVA), hosted at the National Institute of Geophysics and Volcanology (INGV) in Rome. Simulated faults were sheared at constant normal stress from 4 to 30 MPa. In SHIVA experiments, we deformed samples at constant slip velocity of 10 μm/s up to 56 mm net slip. In BRAVA tests we performed a sequence of velocity steps (0.1 to 300 μm/s), followed by slide-hold-slide tests (30-3000 s holds; V=10 μm/s slides). Our main results highlight the frictionally strong nature of basalt faults and show opposite friction velocity dependence upon the velocity upsteps: while fault gouges exhibit velocity weakening behavior with increasing normal stress and sliding velocity, bare rock surfaces transition to velocity strengthening behavior as we approach higher slip velocities. The experiments setup and data are further described in the manuscript “Frictional properties of basalt experimental faults and implications for volcano-tectonic settings and geo-energy sites” to which these data are supplementary material.
    Keywords: Fault mechanics ; Friction of basalts ; Rate and State Friction ; Bare rock surfaces ; Simulated fault gouge ; EPOS ; multi-scale laboratories ; rock and melt physical properties ; alkali-olivine_basalt ; Biaxial ; Friction ; Rotary Shear ; Strain gauge
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-25
    Description: Tectonic pseudotachylytes are solidified frictional melts produced on faults during earthquakes and are robust markers of seismic slip events. Nonetheless, pseudotachylytes are apparently uncommon fault rocks, because they are either rarely produced or are easily lost from the geological record. To solve this conundrum, long-lasting (18–35 days) hydrothermal alteration tests were performed on fresh pseudotachylytes produced by sliding solid rock samples at seismic slip rates in the laboratory. After all tests, the pseudotachylytes were heavily altered with dissolution of the matrix and neo-formation of clay aggregates. Post-alteration products closely resemble natural altered pseudotachylytes and associated ultracataclasites (i.e., fault rocks affected by fracturing in the absence of melting), demonstrating that the preservation potential of original pseudotachylyte microstructures is very short, days to months, in the presence of hydrothermal fluids. As a consequence, pseudotachylytes might be significantly underrepresented in the geological record, and on-fault frictional melting during earthquakes is likely to occur more commonly than generally believed
    Description: ERC CoG NOFEAR 614705
    Description: Published
    Description: e2020GL090020
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Keywords: Fault ; Earthquakes ; Pseudotachylyte ; Earthquake mechanics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...