ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0662
    Keywords: Arctic pollution ; aerosols ; condensation nuclei ; extinction coefficient ; AGASP ; polar meteorology ; Alert ; N.W.T.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract In April 1986, a well-instrumented NOAA WP-3D research aircraft conducted three flights in the Canadian Arctic tied to the Canadian Atmospheric Environment Service baseline station in Alert, Northwest Territories. Two of the flights were coordinated with the National Aeronautical Establishment of Canada Twin Otter and the University of Washington C-131 research aircraft. The haze observed in the Canadian Arctic was well-aged and mixed throughout the troposphere in concentrations well below those observed during the previous weeks in the Alaskan Arctic. Over the ice, beneath the surface temperature inversion, ozone was generally depleted to near zero. Over the coast at Alert, there is evidence that topography and downslope winds reduce the strength of the inversion, thus allowing lower tropospheric gases and aerosols to mix down to the surface. At the top of the troposphere, an aerosol-depleted region was observed. In the lower stratosphere, aerosol concentrations were elevated above those observed in the troposphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Aircraft profiles of O3 concentrations over the Arctic ice pack in spring exhibit a depletion of O3 beneath the surface temperature inversion. One such profile from the NOAA WP-3D Arctic Gas and Aerosol Sampling Program (AGASP) flights in April, 1986 north of Alert, NWT (YLT, 82.5 N) is shown. The gradient of O3 across the temperature inversion, which is essentially a step function from tropospheric values (35 to 40 ppbv) to 0, is somewhat masked by a 1-min running mean applied to the data. Evidence is presented that O3 destruction beneath the Arctic temperature inversion is the result of a photochemical reaction between gaseous Br compounds and O3 to produce particulate Br aerosol. It is noted that in springtime, O3 at the Alert Baseline Station regularly decreases from 30 to 40 ppbv to near 0 over the period of a few hours to a day. At the same time, there is a production of particulate Br with a near 1.0 anti-correlation to O3 concentration. Surface concentrations of bromoform in the Arctic exhibit a rapid decrease following polar sunrise. AGASP aircraft measurements of filterable bromine particulates in the Arctic (March-April, 1983 and 1986) are shown. The greatest concentrations of Br aerosol (shown as enrichment factors relative to to Na in seawater, EFBR (Na)) were observed in samples collected beneath the surface temperature inversion over ice. Samples collected at the same altitude over open ocean (off Spitzbergen) labeled Marine did not exhibit similar Br enrichments. A second region of particulate Br enrichment was observed in the lower stratosphere, which regularly descends to below 500 mb (5.5 km) in the high Arctic. The NOAA WP-3D flew in the stratosphere on all AGASP flights and occasionally measured O3 concentrations in excess of 300 ppbv.
    Keywords: ENVIRONMENT POLLUTION
    Type: NASA, Goddard Space Flight Center, Polar Ozone Workshop. Abstracts; p 204-205
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The first balloon-borne frost point measurements over Antarctica were made during September and October, 1987 as part of the NOZE 2 effort at McMurdo. The results indicate water vapor mixing ratios on the order of 2 ppmv in the 15 to 20 km region which is somewhat smaller than the typical values currently being used significantly smaller than the typical values currently being used in polar stratospheric cloud (PSC) theories. The observed water vapor mixing ratio would correspond to saturated conditions for what is thought to be the lowest stratospheric temperatures encountered over the Antarctic. Through the use of available lidar observations there appears to be significant evidence that some PSCs form at temperatures higher than the local frost point (with respect to water) in the 10 to 20 km region thus supporting the nitric acid theory of PSC composition. Clouds near 15 km and below appear to form in regions saturated with respect to water and thus are probably mostly ice water clouds although they could contain relatively small amounts of other constituents. Photographic evidence suggests that the clouds forming above the frost point probably have an appearance quite different from the lower altitude iridescent, colored nacreous clouds.
    Keywords: ENVIRONMENT POLLUTION
    Type: NASA, Goddard Space Flight Center, Polar Ozone Workshop. Abstracts; p 60
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A research flight with the NOAA WP-3D aircraft revealed evidence for stratospheric-tropospheric exchange within the Arctic through tropopause folding on the flank of the polar vortex. Observations showed descent of the tropopause and of stratospheric ozone to 700 mb along the west coast of Greenland. Measurements of condensation nuclei and analysis of high volume impactor samples documented the presence of volcanic debris probably from the 1982 El Chichon eruption, including H2SO4 droplets, within the polar vortex and associated tropopause fold.
    Keywords: ENVIRONMENT POLLUTION
    Type: Geophysical Research Letters (ISSN 0094-8276); 11; 421-424
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...