ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The rapid decrease in O3 column densities observed during Antarctic spring has been attributed to several chemical mechanisms involving nitrogen, bromine, or chlorine species, to dynamical mechanisms, or to a combination of the above. Chlorine-related theories, in particular, predict greatly elevated concentrations of ClO and OClO and suppressed abundances of NO2 below 22 km. The heterogeneous reactions and phase transitions proposed by these theories could also impact the concentrations of HCl, ClNO3 and HNO3 in this region. Observations of the above species have been carried out from the ground by the National Ozone Expedition (NOZE-I, 1986, and NOZE-II, 1987), and from aircrafts by the Airborne Antarctic Ozone Experiment (AAOE) during the austral spring of 1987. Observations of aerosol concentrations, size distribution and backscattering ratio from AAOE, and of aerosol extinction coefficients from the SAM-II satellite can also be used to deduce the altitude and temporal behavior of surfaces which catalyze heterogeneous mechanisms. All these observations provide important constraints on the photochemical processes suggested for the spring Antarctic stratosphere. Results are presented for the concentrations and time development of key trace gases in the Antarctic stratosphere, utilizing the AER photochemical model. This model includes complete gas-phase photochemistry, as well as heterogeneous reactions. Heterogeneous chemistry is parameterized in terms of surface concentrations of aerosols, collision frequencies between gas molecules and aerosol surfaces, concentrations of HCl/H2O in the frozen particles, and probability of reaction per collision (gamma). Values of gamma are taken from the latest laboratory measurements. The heterogeneous chemistry and phase transitions are assumed to occur between 12 and 22 km. The behavior of trace species at higher altitudes is calculated by the AER 2-D model without heterogeneous chemistry. Calculations are performed for solar illumination conditions typical of 60, 70, and 80 S, from July 15 to October 31.
    Keywords: ENVIRONMENT POLLUTION
    Type: NASA, Goddard Space Flight Center, Polar Ozone Workshop. Abstracts; p 173-175
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Explaining the observed ozone trends discussed in an earlier update and predicting future trends requires an understanding of the stratospheric processes that affect ozone. Stratospheric processes occur on both large and small spatial scales and over both long and short periods of time. Because these diverse processes interact with each other, only in rare cases can individual processes be studied by direct observation. Generally the cause and effect relationships for ozone changes were established by comparisons between observations and model simulations. Increasingly, these comparisons rely on the developing, observed relationships among trace gases and dynamical quantities to initialize and constrain the simulations. The goal of this discussion of stratospheric processes is to describe the causes for the observed ozone trends as they are currently understood. At present, we understand with considerable confidence the stratospheric processes responsible for the Antarctic ozone hole but are only beginning to understand the causes of the ozone trends at middle latitudes. Even though the causes of the ozone trends at middle latitudes were not clearly determined, it is likely that they, just as those over Antarctica, involved chlorine and bromine chemistry that was enhanced by heterogeneous processes. This discussion generally presents only an update of the observations that have occurred for stratospheric processes since the last assessment (World Meteorological Organization (WMO), 1990), and is not a complete review of all the new information about stratospheric processes. It begins with an update of the previous assessment of polar stratospheres (WMO, 1990), followed by a discussion on the possible causes for the ozone trends at middle latitudes and on the effects of bromine and of volcanoes.
    Keywords: ENVIRONMENT POLLUTION
    Type: NASA, Washington, Scientific Assessment of Ozone Depletion: 1991; 21 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Satellite borne instruments, the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet spectrometer (SBUV), show that total column ozone has decreased by more than 5 percent in the neighborhood of 60 S at all seasons since 1979. This is considerably larger than the decrease calculated by 2-D models which take into account solar flux variation and increases of trace gas concentrations over the same period. The meteorological conditions (warmer temperature and the apparent lack of polar stratospheric clouds) at these latitudes do not seem to favor heterogeneous chemistry as the direct cause for the observed ozone reduction. A mechanism involving the seasonal transport of ozone-poor air mass from within the polar vortex to lower latitudes (the so-called dilution effect) is proposed as a possible explanation for the observed year-round ozone reduction in regions away from the vortex.
    Keywords: ENVIRONMENT POLLUTION
    Type: NASA, Goddard Space Flight Center, Polar Ozone Workshop. Abstracts; p 214-215
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: The reaction rate of N2O5 on sulphate aerosols is included in a model to predict global ozone loss and the column abundances of atmospheric gases. Because the reaction of N2O5 and the aerosols can take place in the stratospheric sulphate aerosol layer, it is included in the 2D model so that the results can be compared to abundances derived from satellite data and ground-based measurements. The N2O5/sulphate reaction is the only heterogeneous reaction in the model, in which aerosol loading is assumed to be constant and only diurnal values are examined. The decadal ozone trends resulting from calculations based on the model are found to be closer to the observed values. An important conclusion is that measurements of OH, ClO, HNO3, NO, and NO2 in the region of about 14-25 km are needed to examine significant changes in their abundances resulting from the inclusion of the N2O5/sulphate aerosol reaction.
    Keywords: ENVIRONMENT POLLUTION
    Type: Nature (ISSN 0028-0836); 352; 134-137
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper presents viewgraphs on the low frequency high amplitude temperature oscillations observed in loop heat pipe operations. The topics include: 1) Proposed Theory; 2) Test Loop and Test Results; and 3) Effects of Various Parameters. The author also presents a short summary on the conditiions that must be met in order to sustain a low frequency high amplitude temperature oscillation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Two-Phase Thermal Control Technology Workshop 2003; Sep 15, 2003 - Sep 17, 2003; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The potential impact of high-speed civil transport (HSCT) aircraft emissions on stratospheric ozone and the sensitivity of these results to changes in aerosol loading are examined with a two-dimensional model. With aerosols fixed at background levels, calculated ozone changes due to HSCT aircraft emissions range from negligible up to 4-6% depletions in column zone at northern high latitudes. The magnitude of the ozone change depends mainly on the NO(x) increase due to aircraft emissions, which depends on fleet size, cruise altitude, and engine design. The partitioning of the odd nitrogen species in the lower stratosphere among NO, NO2, N2O5, is strongly dependent on the concentration of sulfuric acid aerosol particles, and thus the sensitivity of O3 to NO(x) emissions changes when the stratospheric aerosol loading changes. Aerosol concentrations 4 times greater than background levels have not been unusual in the last 2 decades. Our model results show that a factor of 4 increase in aerosol loading would significantly reduce the calculated ozone depletion due to HSCT emissions. Because of the neutral variabiltiy of stratospheric aerosols, the possible impact of HSCT emissions on ozone must be viewed as a range of possible results.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D12; p. 23,133-23,140
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Tropospheric Emission Spectrometer (TES) instrument heat rejection system has been operating in space for nearly 8 years since launched on NASA's EOS Aura Spacecraft. The instrument is an infrared imaging fourier transform spectrometer with spectral coverage of 3.2 to 15.4 microns. The loop heat pipe (LHP) based heat rejection system manages all of the instrument components waste heat including the two mechanical cryocoolers and their drive electronics. Five propylene LHPs collect and transport the instrument waste heat to the near room temperature nadir viewing radiators. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. Focal plane decontamination cycles require power cycling both cryocoolers which also requires the two cryocooler LHPs to turn off and on during each cycle. To date, the cryocooler LHPs have undergone 24 start-ups in orbit successfully. This paper reports on the TES cryocooler loop heat pipe based heat rejection system performance. After a brief overview of the instrument thermal design, the paper presents detailed data on the highly successful space operation of the loop heat pipes since instrument turn-on in 2004. The data shows that the steady-state and transient operation of the LHPs has not changed since 2004 and shows consistent and predictable performance. The LHP based heat rejection system has provided a nearly constant heat rejection heat sink for all of its equipment which has led to exceptional overall instrument performance with world class science.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 42nd International Conference on Environmental Systems; Feb 13, 2012 - Feb 15, 2012; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: A fluid pump assembly includes a rotatable component that can be rotated about an axis and a static vane assembly located adjacent to the rotatable component. The static vane assembly includes a circumferential surface axially spaced from the rotatable component, and one or more vanes extending from the circumferential surface toward the rotatable component. The one or more vanes are configured to produce a radial load on the rotatable component when the rotatable component is rotating about the axis and a fluid is present between the static vane assembly and the rotatable component.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-27
    Description: Increases in aerosol loading after the Pinatubo eruption are expected to cause additional ozone depletion. Even though aerosol loadings were highest in the winter of 1991-1992, recent analyses of satellite and ground-based ozone measurements indicate that ozone levels in the winter of 1992-1993 are the lowest recorded in recent years, raising the question of the mechanisms responsible for such behavior. We have incorporated aerosol surface areas derived from the Stratospheric Aerosol and Gas Experiment II (SAGE-II) measurements into our two-dimensional model. Inclusion of heterogeneous chemsitry on these enhanced aerosol surfaces yields maximum ozone reductions during the winter of 1992-1993 in the Northern Hemisphere, consistent with those derived from observations. This delayed behavior is due to the combination of the non-linear nature of the impact of heterogeneous reactions as a function of aerosol surface area, and the long time constants for ozone in the lower stratosphere. If heterogeneous mechanisms are primarily responsible for the low 1992-1993 ozone levels, we expect ozone concentrations to start recovering in 1994.
    Keywords: ENVIRONMENT POLLUTION
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 3; p. 209-212
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: Revised model estimates of the effect of lightning on the lower stratospheric NOy are presented. Several changes in the Atmospheric and Environmental Research Incorporated model were made since the last evaluation of the impact of lightning. Improvements were made in the model circulation and location of tropopause in the tropics, which is now calculated from the National Meteorological Center temperature data. Changes in model circulation reduced the mass flux from the troposphere to the tropical stratosphere. The calculated mass fluxes are found to agree better with some recent estimates. The circulation changes also reduced the advective mass flux from the tropical lower stratosphere to the midlatitudes. The change in circulation and the change in the tropopause height lead to increases in the calculated concentration of N2O, O3 and NOy in the tropical lower stratosphere. The effect of lightning is to increase the calculated concentration of NOy around 64 mbar by a factor of 2, compared to a factor of 10 enhancement in the previous calculations. Comparison with the Stratosphere Troposphere Exchange Project 1987 data indicates that the inclusion of a lightning source brings the model results in closer agreement with the observations.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D4; p. 8167-8173
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...