ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-12
    Description: The long-term warming of the ocean is a critical indicator of both the past and present state of the climate system. It also provides insights about the changes to come, owing to the persistence of both decadal variations and secular trends, which the ocean records extremely well (Hansen et al., 2011; IPCC, 2013; Rhein et al., 2013; Trenberth et al., 2016; Abram et al., 2019). It is well established that the emission of greenhouse gasses by human activities is mainly responsible for global warming since the industrial revolution (IPCC, 2013; Abram et al., 2019). The increased concentration of heat-trapping greenhouse gases in the atmosphere has interfered with natural energy flows. Currently there is an energy imbalance in the Earth’s climate system of almost 1 W m−2 (Trenberth et al., 2014; von Schuckmann et al., 2016, 2020a; Wijffels et al., 2016; Johnson et al., 2018; Cheng et al., 2019a; von Schuckmann et al., 2020a). Over 90% of this excess heat is absorbed by the oceans, leading to an increase of ocean heat content (OHC) and sea level rise, mainly through thermal expansion and melting of ice over land. These processes provide a useful means to quantify climate change. The first global OHC time series by Levitus et al. (2000) identified a robust long-term 0−3000 m ocean warming from 1948−98. Since then, many other analyses of global and regional OHC data have been performed. Here, we provide the first analysis of recent ocean heating, incorporating 2020 measurements through 2020 into our analysis.
    Description: Published
    Description: 523–530
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: ocean temperature ; climate change ; climate change
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 4309-4327, doi:10.1175/JCLI-D-17-0407.1.
    Description: Multidecadal hydroclimate variability has been expressed as “megadroughts” (dry periods more severe and prolonged than observed over the twentieth century) and corresponding “megapluvial” wet periods in many regions around the world. The risk of such events is strongly affected by modes of coupled atmosphere–ocean variability and by external impacts on climate. Accurately assessing the mechanisms for these interactions is difficult, since it requires large ensembles of millennial simulations as well as long proxy time series. Here, the Community Earth System Model (CESM) Last Millennium Ensemble is used to examine statistical associations among megaevents, coupled climate modes, and forcing from major volcanic eruptions. El Niño–Southern Oscillation (ENSO) strongly affects hydroclimate extremes: larger ENSO amplitude reduces megadrought risk and persistence in the southwestern United States, the Sahel, monsoon Asia, and Australia, with corresponding increases in Mexico and the Amazon. The Atlantic multidecadal oscillation (AMO) also alters megadrought risk, primarily in the Caribbean and the Amazon. Volcanic influences are felt primarily through enhancing AMO amplitude, as well as alterations in the structure of both ENSO and AMO teleconnections, which lead to differing manifestations of megadrought. These results indicate that characterizing hydroclimate variability requires an improved understanding of both volcanic climate impacts and variations in ENSO/AMO teleconnections.
    Description: This work is supported by NSF EaSM Grants AGS-1243125 and NCAR-1243107 to The University of Arizona.
    Description: 2018-11-03
    Keywords: Drought ; Climate variability ; ENSO ; Paleoclimate ; Climate models ; Multidecadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...