ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EARTH RESOURCES AND REMOTE SENSING  (1)
  • Lasers and Masers  (1)
  • drainage class  (1)
  • 1
    ISSN: 1572-9761
    Keywords: aggregation ; biomass ; drainage class ; GIS ; soil maps ; succession model ; waterlogging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Patch modeling can be used to scale-up processes to portray landscape-level dynamics. Via direct extrapolation, a heterogeneous landscape is divided into its constituent patches; dynamics are simulated on each representative patch and are weighted and aggregated to formulate the higher level response. Further extrapolation may be attained by coarsening the resolution of or lumping environmental data (e.g., climatic, edaphic, hydrologic, topographic) used to delimit a patch. Forest patterns at the southern boreal/northern hardwood transition zone are often defined by soil heterogeneity, determined primarily by the extent and duration of soil saturation. To determine how landscape-level dynamics predicted from direct extrapolation compare when coarsening soil parameters, we simulated forest dynamics for soil series representing a range of drainage classes from east- central Maine. Responses were aggregated according to the distribution of soil associations comprising a 600 ha area based on local- (1:12,000), county- (1:120,000) and state- (1:250,000) scale soil maps. At the patch level, simulated aboveground biomass accumulated more slowly in poorer draining soils. Different soil series yielded different communities comprised of species with various tolerances for soil saturation. When aggregated, removal of waterlogging caused a 20–60% increase in biomass accumulation during the first 50 years of simulation. However, this early successional increase and the maximum level of biomass accumulation over a 200 year period varied by as much as 40% depending on the geospatial data. This marked discrepancy suggests caution when extrapolating with forest patch models by coarsening parameters and demonstrates how rules used to rescale environmental data need to be evaluated for consistency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The development of an integrated approach to the modeling of forest dynamics encompassing submodels of forest growth and succession, soil processes and radiation interactions, is reported. Remote sensing technology is a key element of this study in that it provides data for developing, initializing, updating, and validating the models. The objectives are reviewed, the data collected and models in use are discussed, and a framework for studying interactions between the forest growth, soil process and energy interaction components, is described. Remote sensing technology used in the study includes optical and microwave field, aircraft and satellite borne instruments. The types of data collected during intensive field and aircraft campaigns included bidirectional reflectance, thermal emittance and multifrequency, multipolarization synthetic aperture radar backscatter. Synthetic imagery of derived products such as forest biomass and NDVI (Normalized Difference Vegetative Index), and collections of ground data are being assembled in a georeferenced data base. These data are used to drive or test multidiscipline simulations of forested ecosystems. Enhancements to the modeling environment permit considerable flexibility in configuring simulations and selecting results for reporting and graphical display.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: CNES, Proceedings of 6th International Symposium on Physical Measurements and Signatures in Remote Sensing; p 1005-1012
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A new active vegetation index measurement technique has been developed and demonstrated using low-power laser diodes to make horizontal-path lidar measurements of nearby deciduous foliage. The two wavelength laser transmitter operates within and adjacent to the 680 nm absorption feature exhibited by all chlorophyll containing vegetation. Measurements from early October through late November 2003 are presented and the results are discussed.
    Keywords: Lasers and Masers
    Type: 22nd International Laser Radar Conference; Jul 12, 2004 - Jul 16, 2004; Matera; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...