ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EARTH RESOURCES AND REMOTE SENSING  (12)
  • General Chemistry  (5)
  • Male  (4)
  • Meteorology and Climatology  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für die chemische Industrie 88 (1976), S. 254-255 
    ISSN: 0044-8249
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0044-8249
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0570-0833
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 22 (1983), S. 419-420 
    ISSN: 0570-0833
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: No Abstract.The complete manuscript of this communication appears in: Angew. Chem. Suppl. 1983, 564. DOI:10.1002/anie.198305640
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 22 (1983), S. 564-570 
    ISSN: 0570-0833
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-01-13
    Description: The development of osteoporosis involves the interaction of multiple environmental and genetic factors. Through combined genetic and genomic approaches, we identified the lipoxygenase gene Alox15 as a negative regulator of peak bone mineral density in mice. Crossbreeding experiments with Alox15 knockout mice confirmed that 12/15-lipoxygenase plays a role in skeletal development. Pharmacologic inhibitors of this enzyme improved bone density and strength in two rodent models of osteoporosis. These results suggest that drugs targeting the 12/15-lipoxygenase pathway merit investigation as a therapy for osteoporosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, Robert F -- Allard, John -- Avnur, Zafrira -- Nikolcheva, Tania -- Rotstein, David -- Carlos, Amy S -- Shea, Marie -- Waters, Ruth V -- Belknap, John K -- Peltz, Gary -- Orwoll, Eric S -- AR44659/AR/NIAMS NIH HHS/ -- HG02322/HG/NHGRI NIH HHS/ -- R01 AR044659/AR/NIAMS NIH HHS/ -- R01 AR044659-08/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 9;303(5655):229-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bone and Mineral Research Unit, Department of Medicine, School of Medicine, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. kleinro@ohsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14716014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arachidonate 12-Lipoxygenase/*genetics/*metabolism ; Arachidonate 15-Lipoxygenase/*genetics/*metabolism ; Bone Density/drug effects/*genetics ; Bone Marrow Cells/metabolism ; Cell Differentiation ; Cells, Cultured ; Crosses, Genetic ; Enzyme Inhibitors/pharmacology ; Female ; Fluorenes/pharmacology ; Gene Expression Profiling ; Genetic Linkage ; Kidney/metabolism ; Lipoxygenase Inhibitors ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Mice, Knockout ; Mice, Transgenic ; Oligonucleotide Array Sequence Analysis ; Osteoblasts/cytology/metabolism/physiology ; Osteogenesis ; Osteoporosis/enzymology ; Polymorphism, Genetic ; Quantitative Trait Loci ; Rats ; Receptors, Cytoplasmic and Nuclear/metabolism ; Stromal Cells/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-10
    Description: Cancer immunoediting, the process by which the immune system controls tumour outgrowth and shapes tumour immunogenicity, is comprised of three phases: elimination, equilibrium and escape. Although many immune components that participate in this process are known, its underlying mechanisms remain poorly defined. A central tenet of cancer immunoediting is that T-cell recognition of tumour antigens drives the immunological destruction or sculpting of a developing cancer. However, our current understanding of tumour antigens comes largely from analyses of cancers that develop in immunocompetent hosts and thus may have already been edited. Little is known about the antigens expressed in nascent tumour cells, whether they are sufficient to induce protective antitumour immune responses or whether their expression is modulated by the immune system. Here, using massively parallel sequencing, we characterize expressed mutations in highly immunogenic methylcholanthrene-induced sarcomas derived from immunodeficient Rag2(-/-) mice that phenotypically resemble nascent primary tumour cells. Using class I prediction algorithms, we identify mutant spectrin-beta2 as a potential rejection antigen of the d42m1 sarcoma and validate this prediction by conventional antigen expression cloning and detection. We also demonstrate that cancer immunoediting of d42m1 occurs via a T-cell-dependent immunoselection process that promotes outgrowth of pre-existing tumour cell clones lacking highly antigenic mutant spectrin-beta2 and other potential strong antigens. These results demonstrate that the strong immunogenicity of an unedited tumour can be ascribed to expression of highly antigenic mutant proteins and show that outgrowth of tumour cells that lack these strong antigens via a T-cell-dependent immunoselection process represents one mechanism of cancer immunoediting.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsushita, Hirokazu -- Vesely, Matthew D -- Koboldt, Daniel C -- Rickert, Charles G -- Uppaluri, Ravindra -- Magrini, Vincent J -- Arthur, Cora D -- White, J Michael -- Chen, Yee-Shiuan -- Shea, Lauren K -- Hundal, Jasreet -- Wendl, Michael C -- Demeter, Ryan -- Wylie, Todd -- Allison, James P -- Smyth, Mark J -- Old, Lloyd J -- Mardis, Elaine R -- Schreiber, Robert D -- R01 CA043059/CA/NCI NIH HHS/ -- U01 CA141541/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 8;482(7385):400-4. doi: 10.1038/nature10755.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22318521" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Carrier Proteins/genetics/immunology ; DNA-Binding Proteins/deficiency/genetics ; Exome/*genetics/*immunology ; Histocompatibility Antigens Class I/immunology ; Humans ; Immunologic Surveillance/*immunology ; Male ; Methylcholanthrene ; Mice ; Microfilament Proteins/genetics/immunology ; Models, Immunological ; Neoplasms/chemically induced/*genetics/*immunology/pathology ; Reproducibility of Results ; Sarcoma/chemically induced/genetics/immunology/pathology ; T-Lymphocytes/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-03-01
    Description: Sudden cardiac death exhibits diurnal variation in both acquired and hereditary forms of heart disease, but the molecular basis of this variation is unknown. A common mechanism that underlies susceptibility to ventricular arrhythmias is abnormalities in the duration (for example, short or long QT syndromes and heart failure) or pattern (for example, Brugada's syndrome) of myocardial repolarization. Here we provide molecular evidence that links circadian rhythms to vulnerability in ventricular arrhythmias in mice. Specifically, we show that cardiac ion-channel expression and QT-interval duration (an index of myocardial repolarization) exhibit endogenous circadian rhythmicity under the control of a clock-dependent oscillator, kruppel-like factor 15 (Klf15). Klf15 transcriptionally controls rhythmic expression of Kv channel-interacting protein 2 (KChIP2), a critical subunit required for generating the transient outward potassium current. Deficiency or excess of Klf15 causes loss of rhythmic QT variation, abnormal repolarization and enhanced susceptibility to ventricular arrhythmias. These findings identify circadian transcription of ion channels as a mechanism for cardiac arrhythmogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297978/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297978/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jeyaraj, Darwin -- Haldar, Saptarsi M -- Wan, Xiaoping -- McCauley, Mark D -- Ripperger, Jurgen A -- Hu, Kun -- Lu, Yuan -- Eapen, Betty L -- Sharma, Nikunj -- Ficker, Eckhard -- Cutler, Michael J -- Gulick, James -- Sanbe, Atsushi -- Robbins, Jeffrey -- Demolombe, Sophie -- Kondratov, Roman V -- Shea, Steven A -- Albrecht, Urs -- Wehrens, Xander H T -- Rosenbaum, David S -- Jain, Mukesh K -- HL054807/HL/NHLBI NIH HHS/ -- HL066991/HL/NHLBI NIH HHS/ -- HL075427/HL/NHLBI NIH HHS/ -- HL076754/HL/NHLBI NIH HHS/ -- HL084154/HL/NHLBI NIH HHS/ -- HL086548/HL/NHLBI NIH HHS/ -- HL086614/HL/NHLBI NIH HHS/ -- HL089598/HL/NHLBI NIH HHS/ -- HL091947/HL/NHLBI NIH HHS/ -- HL094660/HL/NHLBI NIH HHS/ -- HL097595/HL/NHLBI NIH HHS/ -- HL102241/HL/NHLBI NIH HHS/ -- HL76446/HL/NHLBI NIH HHS/ -- K24 HL076446/HL/NHLBI NIH HHS/ -- K99 HL102241/HL/NHLBI NIH HHS/ -- M01-RR02635/RR/NCRR NIH HHS/ -- R00 HL102241/HL/NHLBI NIH HHS/ -- R01 HL084154/HL/NHLBI NIH HHS/ -- R01 HL084154-04/HL/NHLBI NIH HHS/ -- R01 HL086548/HL/NHLBI NIH HHS/ -- R01 HL086548-05/HL/NHLBI NIH HHS/ -- R01 HL097593/HL/NHLBI NIH HHS/ -- R01 HL097593-03/HL/NHLBI NIH HHS/ -- R01 HL110630/HL/NHLBI NIH HHS/ -- R01 HL110630-02/HL/NHLBI NIH HHS/ -- England -- Nature. 2012 Feb 22;483(7387):96-9. doi: 10.1038/nature10852.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA. darwinjeyaraj@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22367544" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrhythmias, Cardiac/complications/genetics/*physiopathology ; Cells, Cultured ; Circadian Rhythm/genetics/*physiology ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Death, Sudden, Cardiac/etiology ; Electrocardiography ; Gene Expression Regulation ; Heart Conduction System/*physiology ; Heart Rate/physiology ; Heart Ventricles/cytology ; Kv Channel-Interacting Proteins/biosynthesis/genetics ; Male ; Mice ; Mice, Inbred C57BL ; Muscle Cells/cytology ; Promoter Regions, Genetic/genetics ; Rats ; Time Factors ; Transcription Factors/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-01-02
    Description: Several recent studies link parental environments to phenotypes in subsequent generations. In this work, we investigate the mechanism by which paternal diet affects offspring metabolism. Protein restriction in mice affects small RNA (sRNA) levels in mature sperm, with decreased let-7 levels and increased amounts of 5' fragments of glycine transfer RNAs (tRNAs). In testicular sperm, tRNA fragments are scarce but increase in abundance as sperm mature in the epididymis. Epididymosomes (vesicles that fuse with sperm during epididymal transit) carry RNA payloads matching those of mature sperm and can deliver RNAs to immature sperm in vitro. Functionally, tRNA-glycine-GCC fragments repress genes associated with the endogenous retroelement MERVL, in both embryonic stem cells and embryos. Our results shed light on sRNA biogenesis and its dietary regulation during posttesticular sperm maturation, and they also link tRNA fragments to regulation of endogenous retroelements active in the preimplantation embryo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharma, Upasna -- Conine, Colin C -- Shea, Jeremy M -- Boskovic, Ana -- Derr, Alan G -- Bing, Xin Y -- Belleannee, Clemence -- Kucukural, Alper -- Serra, Ryan W -- Sun, Fengyun -- Song, Lina -- Carone, Benjamin R -- Ricci, Emiliano P -- Li, Xin Z -- Fauquier, Lucas -- Moore, Melissa J -- Sullivan, Robert -- Mello, Craig C -- Garber, Manuel -- Rando, Oliver J -- DP1ES025458/DP/NCCDPHP CDC HHS/ -- R01HD080224/HD/NICHD NIH HHS/ -- UL1 TR000161/TR/NCATS NIH HHS/ -- UL1 TR001453/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 22;351(6271):391-6. doi: 10.1126/science.aad6780. Epub 2015 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA. ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA. Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA. ; Department of Obstetrics, Gynecology and Reproduction, Universite Laval, Centre Hospitalier Universitaire de Quebec Research Center, Quebec City, Quebec G1V 4G2, Canada. ; RNAi Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA. ; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA. RNAi Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA. ; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA. RNAi Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA. Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA. ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA. RNAi Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA. Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA. ; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA. oliver.rando@umassmed.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26721685" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/metabolism ; Diet, Protein-Restricted ; Epididymis/metabolism ; *Fertilization ; *Gene Expression Regulation ; Male ; Mice ; MicroRNAs/metabolism ; RNA, Transfer, Gly/*metabolism/*physiology ; Retroelements/genetics ; *Sperm Maturation ; Spermatozoa/*metabolism ; Testis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: Submillimeter-wave cloud ice radiometry is an innovative technique for determining the amount of ice present in cirrus clouds, measuring median crystal size, and constraining crystal shape. The radiometer described in this poster is being developed to acquire data to validate radiometric retrievals of cloud ice at submillimeter wavelengths. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, meeting key climate modeling and NASA measurement needs.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...