ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 35 (1999), S. 227-258 
    ISSN: 1573-1634
    Keywords: foamy oil flow ; modelling ; nonequilibrium ; dynamic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract This paper describes a dynamic model for the simulation of foamy oil flow in porous media. The model includes expressions for the rate processes of nucleation, bubble growth and disengagement of dispersed gas bubbles from the oil. The model is used to simulate experimental results pertaining to primary depletion tests conducted in a sand pack. Using the model to interpret experimental results indicated that, although the lifetimes of supersaturation and dispersed gas bubbles may be short, supersaturated conditions are likely to exist, and dispersed gas bubbles are likely to be present during the entire production period, as long as the pressure continues to decline at a high rate. The model developed in this paper gave better agreement with experimental data than other proposed models. The effect of foamy oil flow increases as the rate of pressure decline increases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 35 (1999), S. 157-187 
    ISSN: 1573-1634
    Keywords: foamy oil flow ; solution gas drive ; viscous oil ; supersaturation ; nucleation ; gas‐oil dispersion ; dispersed flow.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract ‘Foamy oil flow’ is a term coined to describe a form of two‐phase oil‐gas flow that appears to occur during solution gas drive in some heavy oil reservoirs and does not fit the classical models of two‐phase flow. Most of the evidence supporting the presence of this unusual flow mechanism is circumstantial and comes from attempts to explain much higher than expected well productivity and primary recovery factors in several heavy oil reservoirs. This paper is a review of the available literature on foamy oil flow in primary production of heavy oils under solution gas drive. The mechanisms operating in solution gas drive in heavy oil reservoirs are briefly discussed. The issues related to supersaturation in oil phase, bubble nucleation, critical gas saturation, and relative permeability are discussed. The possible role of rate processes related to the release of solution gas and the formation of a segregated gas phase is reviewed. The pore‐scale mechanisms involved in creation and propagation of dispersed gas flow are discussed. Several published mathematical models of foamy solution gas drive are reviewed with focus on their limitations. The review shows that the theoretical and experimental investigations of foamy oil flow are still in early stages. Although the occurrence of foamy oil flow has been verified in laboratory experiments, its existence at the reservoir scale has not been confirmed. The theoretical understanding of the mechanisms underlying foamy oil flow remains poor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 5 (1990), S. 269-286 
    ISSN: 1573-1634
    Keywords: Dispersion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract An experimental and numerical investigation into the magnitude of longitudinal and transverse dispersion in a two-dimensional flow field over a particle Peclet number range of 50–8500 is reported. Numerical modelling using a Galerkin finite element method is used to test various models, notably those of Fried and combarnous and Koch and Brady. Dispersion at low Peclet numbers (〈 200) is found to be described adequately by either model, which at large Peclet, the degree of dispersion is significantly underestimated. An improved dispersion model for Peclet numbers greater than 200 is proposed. The transverse dispersion term and the choice of inlet boundary condition are found to have a negligible effect on the shape of the breakthrough curve.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...