ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Queueing systems 16 (1994), S. 83-96 
    ISSN: 1572-9443
    Keywords: Probability generating functions ; retrial queues ; steady state ; server vacations ; server setup times ; stochastic decomposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In this paper, we study a retrial queueing model with the server subject to starting failures. We first present the necessary and sufficient condition for the system to be stable and derive analytical results for the queue length distribution as well as some performance measures of the system in steady state. We show that the general stochastic decomposition law forM/G/1 vacation models also holds for the present system. Finally, we demonstrate that a few well known queueing models are special cases of the present model and discuss various interpretations of the stochastic decomposition law when applied to each of these special cases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Queueing systems 21 (1995), S. 199-215 
    ISSN: 1572-9443
    Keywords: Discrete-time queues ; generating functions ; recursive computation ; retrial queues ; stochastic decomposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In this paper, we study the steady-state queue size distribution of the discrete-timeGeo/G/1 retrial queue. We derive analytic formulas for the probability generating function of the number of customers in the system in steady-state. It is shown that the stochastic decomposition law holds for theGeo/G/1 retrial queue. Recursive formulas for the steady-state probabilities are developed. Computations based on these recursive formulas are numerically stable because the recursions involve only nonnegative terms. Since the regularGeo/G/1 queue is a special case of theGeo/G/1 retrial queue, the recursive formulas can also be used to compute the steady-state queue size distribution of the regularGeo/G/1 queue. Furthermore, it is shown that a continuous-timeM/G/1 retrial queue can be approximated by a discrete-timeGeo/G/1 retrial queue by dividing the time into small intervals of equal length and the approximation approaches the exact when the length of the interval tends to zero. This relationship allows us to apply the recursive formulas derived in this paper to compute the approximate steady-state queue size distribution of the continuous-timeM/G/1 retrial queue and the regularM/G/1 queue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...