ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Diatoms  (2)
  • Microbial eukaryotes  (1)
  • Silicon  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Phycology 52 (2016): 716–731, doi:10.1111/jpy.12441.
    Description: Diatoms are highly productive single-celled algae that form an intricately patterned silica cell wall after every cell division. They take up and utilize silicic acid from seawater via silicon transporter (SIT) proteins. This study examined the evolution of the SIT gene family to identify potential genetic adaptations that enable diatoms to thrive in the modern ocean. By searching for sequence homologs in available databases, the diversity of organisms found to encode SITs increased substantially and included all major diatom lineages and other algal protists. A bacterial-encoded gene with homology to SIT sequences was also identified, suggesting that a lateral gene transfer event occurred between bacterial and protist lineages. In diatoms, the SIT genes diverged and diversified to produce five distinct clades. The most basal SIT clades were widely distributed across diatom lineages, while the more derived clades were lineage-specific, which together produced a distinct repertoire of SIT types among major diatom lineages. Differences in the predicted protein functional domains encoded among SIT clades suggest that the divergence of clades resulted in functional diversification among SITs. Both laboratory cultures and natural communities changed transcription of each SIT clade in response to experimental or environmental growth conditions, with distinct transcriptional patterns observed among clades. Together, these data suggest that the diversification of SITs within diatoms led to specialized adaptations among diatoms lineages, and perhaps their dominant ability to take up silicic acid from seawater in diverse environmental conditions.
    Description: Gordon and Betty Moore Foundation Grant Numbers: GBMF2637, GBMF3776; University of Washington; National Science Foundation Grant Number: OCE-1205233
    Keywords: Diatoms ; Gene family ; Molecular evolution ; Nutrients ; Silicon ; Transporter
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Coesel, S. N., Durham, B. P., Groussman, R. D., Hu, S. K., Caron, D. A., Morales, R. L., Ribalet, F., & Armbrust, E. V. Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proceedings of the National Academy of Sciences of the United States of America, 118(6), (2021): e2011038118, https://doi.org/10.1073./pnas.2011038118.
    Description: The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.
    Description: This work was supported by a grant from the Simons Foundation (SCOPE Award 329108 [to E.V.A.]) and XSEDE Grant Allocation OCE160019 (to R.D.G.).
    Keywords: Photoreceptors ; Microbial eukaryotes ; Oligotrophic gyre ; Diel cycles ; Metatranscriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 112 (2015): 453-457, doi:10.1073/pnas.1413137112 .
    Description: About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC) pool. The chemical complexity of marine DOC, along with a poor understanding of which compounds form the basis of trophic interactions between bacteria and phytoplankton, have impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay for metabolite exchange between marine plankton. The most highly upregulated genes (up to 374-fold) by a marine Roseobacter clade bacterium when co-cultured with the diatom Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3- dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the marine microbial food web. As the genes for DHPS catabolism have limited distribution among bacterial taxa, T. pseudonana may use this novel sulfonate for targeted feeding of beneficial associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover, transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by Roseobacter populations. Other such biogeochemically important metabolites may be common in the ocean but difficult to discriminate against the complex chemical background of seawater. Bacterial transformation of this diatom-derived sulfonate represents a new and likely sizeable link in both the marine carbon and sulfur cycles.
    Description: This research was partially funded by NSF grants OCE-1356010 to M.A.M., OCE-1205233 to E.V.A., OCE-0928424 to E.B.K., and OCE-1233964 to S.R.C., and by the Gordon and Betty Moore Foundation grants 538.01 to M.A.M. and 537.01 to E.V.A.
    Description: 2015-06-29
    Keywords: Diatoms ; Bacteria ; DHPS ; Sulfonates ; Vitamin B12 ; RNA-Seq
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...