ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data assimilation  (2)
  • Lagrangian analysis  (1)
  • On-line prediction  (1)
  • Particle models  (1)
  • Particle tracking  (1)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Stochastic environmental research and risk assessment 4 (1990), S. 105-119 
    ISSN: 1436-3259
    Keywords: Kalman filtering ; Optimal smoothing ; Shallow water equations ; Wind stress ; On-line prediction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract Using the state space approach, an on-line filter procedure for combined wind stress identification and tidal flow forecasting is developed. The stochastic dynamic approach is based on the linear twodimensional shallow water equations. Using a finite difference scheme, a system representation of the model is obtained. To account for uncertainties, the system is embedded into a stochastic environment. By employing a Kalman filter, the on-line measurements of the water-level available can be used to identify and predict the shallow water flow. Because it takes a certain time before a fluctuation in the wind stress can be noticed in the water-level measurements, an optimal fixed-lag smoother is used to identify the stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Stochastic environmental research and risk assessment 11 (1997), S. 349-368 
    ISSN: 1436-3259
    Keywords: Data assimilation ; Kalman filter ; Square root filter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract The Kalman filter algorithm can be used for many data assimilation problems. For large systems, that arise from discretizing partial differential equations, the standard algorithm has huge computational and storage requirements. This makes direct use infeasible for many applications. In addition numerical difficulties may arise if due to finite precision computations or approximations of the error covariance the requirement that the error covariance should be positive semi-definite is violated. In this paper an approximation to the Kalman filter algorithm is suggested that solves these problems for many applications. The algorithm is based on a reduced rank approximation of the error covariance using a square root factorization. The use of the factorization ensures that the error covariance matrix remains positive semi-definite at all times, while the smaller rank reduces the number of computations and storage requirements. The number of computations and storage required depend on the problem at hand, but will typically be orders of magnitude smaller than for the full Kalman filter without significant loss of accuracy. The algorithm is applied to a model based on a linearized version of the two-dimensional shallow water equations for the prediction of tides and storm surges. For non-linear models the reduced rank square root algorithm can be extended in a similar way as the extended Kalman filter approach. Moreover, by introducing a finite difference approximation to the Reduced Rank Square Root algorithm it is possible to prevent the use of a tangent linear model for the propagation of the error covariance, which poses a large implementational effort in case an extended kalman filter is used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Stochastic environmental research and risk assessment 7 (1993), S. 109-130 
    ISSN: 1436-3259
    Keywords: Particle models ; transport equations ; parameter identification ; adjoint modelling ; cost function ; gradient
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract For the simulation of the transport of dissolved matter particle models can be used. In this paper a technique is developed for the identification of uncertain parameters in these models. This model calibration is formulated as an optimization problem and is solved with a gradient based algorithm. Here adjoint particle tracks are used for the calculation of the gradient of the cost function. The performance of the calibration method is illustrated by simulations and an application to a river Rhine water quality calamity in November 1986.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 1097-1112 
    ISSN: 0271-2091
    Keywords: Data assimilation ; Kalman filtering ; Shallow water equations ; Water level measurements On-line prediction ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A data assimilation procedure to incorporate measurements into a non-linear tidal model by using Kalman-filtering techniques is developed. The Kalman filter is based on the two-dimensional shallow water equations. To account for the inaccuracies, these equations are embedded into a stochastic environment by introducing a coloured system noise process into the momentum equations. The continuity equation is assumed to be perfect. The deterministic part of the equations is discretized using an ADI method, the stochastic part using the Euler scheme. Assuming that the system noise is less spatially variable than the underlying water wave process, this stochastic part can be approximated on a coarser grid than the grid used to approximate the deterministic part. A Chandrasekhar-type filter algorithm is employed to obtain the constant-gain extended Kalman filter for weakly non-linear systems. The capabilities of the filter are illustrated by applying it to the assimilation of water level measurements into a tidal model of the North Sea.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Modelling 121 (2018): 49-75, doi:10.1016/j.ocemod.2017.11.008.
    Description: Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
    Description: EvS has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 715386). This research for PJW was supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. Funding for HFD was provided by Grant No. DE-SC0012457 from the US Department of Energy. PB acknowledges support for this work from NERC grant NE/R011567/1. SFG is supported by NERC National Capability funding through the Extended Ellett Line Programme.
    Keywords: Ocean circulation ; Lagrangian analysis ; Connectivity ; Particle tracking ; Future modelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...