ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: DNA repair ; Recombination ; recN gene ; Bacillus subtilis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A recN − (recN1) strain of Bacillus subtilis was constructed. The effects of this and recF, recH and addAB mutations on recombination proficiency were tested. Mutations in the recN, recF recH and addAB genes, when present in an otherwise Rec+ B. subtilis strain, did not affect genetic exchange. Strains carrying different combinations of mutations in these genes were constructed and examined for their sensitivity to 4-nitroquinoline1-oxide (4NQO) and recombination proficiency. The recH mutation did not affect the 4NQO sensitivity of recN and recF cells and it only marginally affected that of addA addB cells. However, it reduced genetic recombination in these cells 102- to 104-fold. The addA addB mutations increased the 4NQO sensitivity of recF and recN cells, but completely blocked genetic recombination of recF cells and marginally affected recombination in recN cells. The recN mutation did not affect the recombinational capacity of recF cells. These data indicate that the recN gene product is required for, DNA repair and recombination and that the recF, recH and addAB genes provide overlapping activities that compensate for the effects of single mutants proficiency. We proposed that the recF, recH, recB and addA gene products define four different epistatic groups.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 228 (1991), S. 393-400 
    ISSN: 1617-4623
    Keywords: SOS response ; DNA repair ; Novobiocin ; DNA gyrase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary recF resides between the dnaN and gyrB genes of Bacillus subtilis. The recF15 mutation results in replacement of a glutamate residue in the wild type with a lysine residue in the mutant RecF protein. We investigated the in vivo regulation of recF using a transcriptional fusion to the xylE gene and assaying mRNA production. We found that novobiocin leads to a four-fold induction in recF gene expression, but this is not observed in a gyrB mutant strain. Enhancement of expression of the recF gene in the presence of novobiocin is unrelated to the SOS response. The RecF protein, which has a predicted molecular mass of 42.2 kDa, does not seem to be involved in its own regulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 222 (1990), S. 441-445 
    ISSN: 1617-4623
    Keywords: recE: :cat allele —rec − mutant strains ; DNA repair ; Recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary ArecE mutant (recE6) ofBacillus subtilis was constructed by insertion of a selectable marker into therecE coding region. The insertional inactivation of therecE gene renders cells very sensitive to DNA damaging agents and severely impairs intermolecular recombination, but does not markedly affect plasmid interstrand annealing and intramolecular recombination. TherecE6 allele was then introduced into a set of DNA repair-deficient strains ofB. subtilis. The removal of DNA damage by therecF,addAaddB,recH,recL andrecP gene products is strictly dependent on an activerecE gene product (recE-dependent pathway). On the other hand, the increased sensitization to purine adducts in theuvrA42recE6 andpolA5recE6 strains suggests that such lethal lesions may be removed either by therecE-dependent or by therecE-independent pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...