ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • DNA methylation  (1)
  • Nodulation  (1)
  • 1
    ISSN: 1617-4623
    Keywords: Multigene family ; Clustered genes ; Promoter region ; Nodulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four independent recombinant λ clones hybridizing to parsley chalcone synthase (CHS) cDNA were isolated from a soybean (Glycine max) genomic library. Restriction fragment length polymorphism (RFLP) analysis indicated that the CHS gene family comprises six members. The CHS genes were found to be clustered with three genes on a 10 kb segment and pairs on others. DNA sequences of the 5′-, the coding-, and the 3′ untranslated regions were determined for three different genes. A consensus alignment of the 5′ regions revealed extensive homology between them for up to 150 bp upstream of the TATA box. Developmental regulation of CHS was observed in uninfected and in rhizobium-infected roots. Regulation at the level of transcription by different stimuli was investigated in the root, stem and cotyledons of soybean seedlings. Our results suggest a co-operative induction of CHS genes by wounding and clicitor treatment of cotyledons. The most rapid transcript accumulation, however, was observed in roots and stems. The induction of CHS genes by light was found to be UV dependent. A possible involvement of different members of the CHS gene family in response to elicitor versus UV treatment was analysed by the use of gene specific probes, and unexpectedly revealed that only CHS 1 transcription was induced by either elicitor or UV treatment of seedlings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 249 (1995), S. 375-390 
    ISSN: 1617-4623
    Keywords: DNA methylation ; Transgenic plants Gene inactivation ; Gene inactivation ; Transgenic plants ; Antisense gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have investigated the stability of the expression of different T-DNA-borne genes in hybrid tobacco lines. These lines were constructed to rescue rolC-induced male sterility in kanamycin-resistant P35s-rolC transgenic tobacco plants by expression of rolC antisense genes. Using five different tester lines, a total of 158 hybrids was obtained. We observed inactivation of transgene expression in 20% of the F1 progeny and in 35% of the backcrossed F2 progeny, as indicated by the loss of kanamycin resistance. In 3% of all crosses complete loss of antibiotic resistance was noted, while in most affected hybrid progeny only part of the population became kanamycin sensitive. Single genes could be selectively inactivated on T-DNAs harboring several genes. Gene inactivation was not restricted to one of the two T-DNAs examined. Somatic silencing, visualized by a cell-specific 35SGUSINT marker gene, occurred in a random fashion or exhibited an inherited specific pattern. The type of somatic silencing pattern observed indicated developmental control of the process. Two phenotypic classes could be distinguished with respect to frequency and timing of the inactivation process. Rapid gene inactivation, occurring within a few weeks after germination of hybrid seedlings, was characterized by complete methylation of restriction sites in the promoter of the silenced gene, resetting of gene expression during meiosis, heridity of the developmentally controlled program of gene silencing in subsequent generations, and rapid reactivation of gene expression after genetic separation of the different T-DNAs. In contrast, a slow type of gene inactivation was of a more stochastic nature and was recognized only in hybrids of the backcrossed F2 generation. In this case the degree of promoter methylation, which could extend beyond the T-DNA borders, was not correlated with the reduction in steady-state poly(A)+ mRNA levels, the silenced state was transmitted through meiosis and reactivation lasted several generations. The implications of the observations for our understanding of the gene inactivation process are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...