ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 98 (1999), S. 895-902 
    ISSN: 1432-2242
    Keywords: Key words AFLP (amplified fragment length polymorphism) ; Bermudagrass (Cynodon spp.) ; DNA fingerprinting ; Semi-automated fluorescence-based genotyping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Bermudagrasses (Cynodon spp.) are major turfgrasses for home lawns, public parks, golf courses and sport fields, and are widely adapted to tropical and warmer temperate climates. Morphological and physiological characteristics are not sufficient to differentiate some bermudagrass genotypes because the differences between them are often subtle and subject to environmental influence. In this study, a DNA-typing technique, amplified fragment length polymorphism (AFLP), was used to differentiate bermudagrass genotypes and to explore their genetic relationships. Twenty seven bermudagrass cultivars and introductions, mostly from the Coastal Plain Experiment Station in Tifton, Ga., were assayed by the radioactive (32P) and the fluorescence-labeled AFLP methods. The AFLP technique produced enough polymorphism to differentiate all 27 bermudagrass genotypes, even the closely related ones. An average of 48–74 bands in the 30–600-bp size range was detected by the 32P-labeled AFLP method. The results indicated that most of the 14 primer combinations tested in this study could be used to distinguish bermudagrass genotypes, and that some single primer-pairs could differentiate all 27 of them. To test the reliability and reproducibility of the AFLP procedure, three DNA isolations (replications) of the 27 bermudagrass genotypes were assayed using five primer pairs. Only 0.6% of the bands were evaluated differently among the three replications. One replication of one genotype (which was most likely a planting contaminant) was grouped in an unexpected cluster using the Unweighted Pair Group Mean Average (UPGMA) method. A one- or two-band difference in scoring did not change the clustering of genotypes or the replications within genotypes. The 27 genotypes were grouped into three major clusters, many of which were in agreement with known pedigrees. Trees constructed with different primer combinations using 32P- and fluorescence-labelling formed similar major groupings. The semi-automated fluorescence-based AFLP technique offered significant improvements on fragment sizing and data handling. It was also more accurate for detection and more efficient than the radioactive labelling method. This study shows that the AFLP technique is a reliable tool for differentiating bermudagrass genotypes and for determining genetic relationships among them.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: DNA typing ; Genetic similarity ; Genetic structure ; Genetic resource conservation ; Vegetable and forage cole crops
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Effective conservation and the use of plant genetic resources are essential for future agricultural progress. Critical to this conservation effort is the development of genetic markers which not only distinguish individuals and accessions but also reflect the inherent variation and genetic relationships among collection holdings. We have examined the applicability of the random amplified polymorphic DNA (RAPD) assay for quick, cost-effective, and reliable use in addressing these needs in relation to collection organization and management. Twenty-five decamer oligonucleotide primers were screened individually with a test array composed of individuals representing a range of genetic relationships in Brassica oleracea L. (vegetable and forage cole crops). Over 140 reproducible, polymorphic fragments were generated for study. Each individual of the test array exhibited a unique molecular genotype and composites specific for accessions and botanical varieties could be established. An analysis of similarity based on amplified DNA fragments reflected the known genetic relationships among the selected entries. These results demonstrated that RAPD markers can be of great value in gene bank management for purposes of identification, measurement of variation, and establishment of genetic similarity at the intraspecific level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...