ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-06-28
    Description: The ribonuclease (RNase) H class of enzymes degrades the RNA component of RNA:DNA hybrids and is important in nucleic acid metabolism. RNase H2 is specialized to remove single ribonucleotides [ribonucleoside monophosphates (rNMPs)] from duplex DNA, and its absence in budding yeast has been associated with the accumulation of deletions within short tandem repeats. Here, we demonstrate that rNMP-associated deletion formation requires the activity of Top1, a topoisomerase that relaxes supercoils by reversibly nicking duplex DNA. The reported studies extend the role of Top1 to include the processing of rNMPs in genomic DNA into irreversible single-strand breaks, an activity that can have distinct mutagenic consequences and may be relevant to human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380281/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380281/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Nayun -- Huang, Shar-yin N -- Williams, Jessica S -- Li, Yue C -- Clark, Alan B -- Cho, Jang-Eun -- Kunkel, Thomas A -- Pommier, Yves -- Jinks-Robertson, Sue -- R01 GM038464/GM/NIGMS NIH HHS/ -- R01 GM093197/GM/NIGMS NIH HHS/ -- R01 GM38464/GM/NIGMS NIH HHS/ -- R01 GM93197/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 24;332(6037):1561-4. doi: 10.1126/science.1205016.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700875" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Transport Systems, Basic/genetics ; Base Sequence ; Camptothecin/pharmacology ; Canavanine/pharmacology ; DNA Breaks ; DNA Topoisomerases, Type I/*metabolism ; DNA, Fungal/chemistry/*metabolism ; DNA, Single-Stranded/metabolism ; Microsatellite Repeats ; Molecular Sequence Data ; *Mutagenesis ; Nucleic Acid Conformation ; Ribonuclease H/genetics/metabolism ; Ribonucleotides/*metabolism ; Saccharomyces cerevisiae/enzymology/*genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics ; *Sequence Deletion ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-10
    Description: Cyclin D1 is a component of the core cell cycle machinery. Abnormally high levels of cyclin D1 are detected in many human cancer types. To elucidate the molecular functions of cyclin D1 in human cancers, we performed a proteomic screen for cyclin D1 protein partners in several types of human tumours. Analyses of cyclin D1 interactors revealed a network of DNA repair proteins, including RAD51, a recombinase that drives the homologous recombination process. We found that cyclin D1 directly binds RAD51, and that cyclin D1-RAD51 interaction is induced by radiation. Like RAD51, cyclin D1 is recruited to DNA damage sites in a BRCA2-dependent fashion. Reduction of cyclin D1 levels in human cancer cells impaired recruitment of RAD51 to damaged DNA, impeded the homologous recombination-mediated DNA repair, and increased sensitivity of cells to radiation in vitro and in vivo. This effect was seen in cancer cells lacking the retinoblastoma protein, which do not require D-cyclins for proliferation. These findings reveal an unexpected function of a core cell cycle protein in DNA repair and suggest that targeting cyclin D1 may be beneficial also in retinoblastoma-negative cancers which are currently thought to be unaffected by cyclin D1 inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jirawatnotai, Siwanon -- Hu, Yiduo -- Michowski, Wojciech -- Elias, Joshua E -- Becks, Lisa -- Bienvenu, Frederic -- Zagozdzon, Agnieszka -- Goswami, Tapasree -- Wang, Yaoyu E -- Clark, Alan B -- Kunkel, Thomas A -- van Harn, Tanja -- Xia, Bing -- Correll, Mick -- Quackenbush, John -- Livingston, David M -- Gygi, Steven P -- Sicinski, Piotr -- P01 CA080111/CA/NCI NIH HHS/ -- P01 CA080111-12/CA/NCI NIH HHS/ -- P01 CA109901/CA/NCI NIH HHS/ -- P01 CA109901-07/CA/NCI NIH HHS/ -- P30 AI060354/AI/NIAID NIH HHS/ -- R01 CA083688/CA/NCI NIH HHS/ -- R01 CA083688-10/CA/NCI NIH HHS/ -- R01 CA138804/CA/NCI NIH HHS/ -- R01 CA138804-02/CA/NCI NIH HHS/ -- Z01 ES065089-11/Intramural NIH HHS/ -- England -- Nature. 2011 Jun 8;474(7350):230-4. doi: 10.1038/nature10155.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21654808" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Comet Assay ; Cyclin D1/deficiency/*metabolism ; DNA Damage/radiation effects ; *DNA Repair/radiation effects ; HeLa Cells ; Humans ; Mice ; Neoplasms/genetics/*metabolism/pathology ; Protein Binding/radiation effects ; *Protein Interaction Mapping ; Rad51 Recombinase/*metabolism ; Radiation, Ionizing ; Recombination, Genetic/genetics ; Retinoblastoma Protein/deficiency
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...