ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-10-16
    Description: Double-strand breaks (DSBs) in Saccharomyces cerevisiae can be repaired by gene conversions or by deletions resulting from single-strand annealing between direct repeats of homologous sequences. Although rad1 mutants are resistant to x-rays and can complete DSB-mediated mating-type switching, they could not complete recombination when the ends of the break contained approximately 60 base pairs of nonhomology. Recombination was restored when the ends of the break were made homologous to donor sequences. Additionally, the absence of RAD1 led to the frequent appearance of a previously unobserved type of recombination product. These data suggest RAD1 is required to remove nonhomologous DNA from the 3' ends of recombining DNA, a process analogous to the excision of photodimers during repair of ultraviolet-damaged DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fishman-Lobell, J -- Haber, J E -- GM01722/GM/NIGMS NIH HHS/ -- GM20056/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 16;258(5081):480-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1411547" target="_blank"〉PubMed〈/a〉
    Keywords: *DNA Repair ; DNA, Fungal/genetics ; Deoxyribonucleases, Type II Site-Specific/*metabolism ; Gene Conversion ; Kinetics ; *Recombination, Genetic ; Saccharomyces cerevisiae/*genetics ; Saccharomyces cerevisiae Proteins ; Sequence Deletion ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1982-07-23
    Description: A mutant allele of the chromosomal locus corresponding to the cloned actin gene of the yeast Saccharomyces cerevisiae has been constructed by DNA transformation with a hybrid plasmid which integrates into, and thereby disrupts, the protein-encoding sequences of the gene. In a diploid strain of yeast, disruption of the actin gene on one chromosome results in a mutation that segregates as a recessive lethal tightly linked to a selectable genetic marker on the integrated plasmid. The actin gene, therefore, must encode an essential function for yeast cell growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shortle, D -- Haber, J E -- Botstein, D -- GM18973/GM/NIGMS NIH HHS/ -- GM20056/GM/NIGMS NIH HHS/ -- GM21253/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1982 Jul 23;217(4557):371-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7046050" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*genetics/physiology ; Alleles ; Cloning, Molecular ; DNA, Fungal/genetics ; DNA, Recombinant ; Genes, Lethal ; Genes, Recessive ; Plasmids ; Recombination, Genetic ; Saccharomyces cerevisiae/*genetics ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...