ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-05-15
    Description: RAFT1 (rapamycin and FKBP12 target 1; also called FRAP or mTOR) is a member of the ATM (ataxia telangiectasia mutated)-related family of proteins and functions as the in vivo mediator of the effects of the immunosuppressant rapamycin and as an important regulator of messenger RNA translation. In mammalian cells RAFT1 interacted with gephyrin, a widely expressed protein necessary for the clustering of glycine receptors at the cell membrane of neurons. RAFT1 mutants that could not associate with gephyrin failed to signal to downstream molecules, including the p70 ribosomal S6 kinase and the eIF-4E binding protein, 4E-BP1. The interaction with gephyrin ascribes a function to the large amino-terminal region of an ATM-related protein and reveals a role in signal transduction for the clustering protein gephyrin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sabatini, D M -- Barrow, R K -- Blackshaw, S -- Burnett, P E -- Lai, M M -- Field, M E -- Bahr, B A -- Kirsch, J -- Betz, H -- Snyder, S H -- DA-00074/DA/NIDA NIH HHS/ -- DA-00266/DA/NIDA NIH HHS/ -- GM-07309/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 May 14;284(5417):1161-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johns Hopkins University School of Medicine, Department of Neuroscience, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10325225" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Gene Expression ; HeLa Cells ; Humans ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; Phosphoproteins/*metabolism ; Phosphorylation ; *Phosphotransferases (Alcohol Group Acceptor) ; Rats ; Receptors, Glycine/metabolism ; Repressor Proteins/metabolism ; Ribosomal Protein S6 Kinases/*metabolism ; *Signal Transduction ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-10-07
    Description: TFII-I is a transcription factor and a target of phosphorylation by Bruton's tyrosine kinase. In humans, deletions spanning the TFII-I locus are associated with a cognitive defect, the Williams-Beuren cognitive profile. We report an unanticipated role of TFII-I outside the nucleus as a negative regulator of agonist-induced calcium entry (ACE) that suppresses surface accumulation of TRPC3 (transient receptor potential C3) channels. Inhibition of ACE by TFII-I requires phosphotyrosine residues that engage the SH2 (Src-homology 2) domains of phospholipase C-g (PLC-g) and an interrupted, pleckstrin homology (PH)-like domain that binds the split PH domain of PLC-g. Our observations suggest a model in which TFII-I suppresses ACE by competing with TRPC3 for binding to PLC-g.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Caraveo, Gabriela -- van Rossum, Damian B -- Patterson, Randen L -- Snyder, Solomon H -- Desiderio, Stephen -- New York, N.Y. -- Science. 2006 Oct 6;314(5796):122-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17023658" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bradykinin/pharmacology ; Calcium/*metabolism ; Calcium Channels/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Humans ; Models, Biological ; Molecular Sequence Data ; PC12 Cells ; Phospholipase C gamma/chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Rats ; TRPC Cation Channels/*metabolism ; Transcription Factors, TFII/chemistry/*metabolism ; Uridine Triphosphate/pharmacology ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1978-08-04
    Description: Neuronal cells, axons, and terminals containing immunoreactive enkephalin have been visualized in cultures of dissociated fetal spinal cord. These cultures may provide a valuable system in which to explore the effects of chronic drug treatment on the physiology of enkephalin-containing cells and their interactions with other cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neale, J H -- Barker, J L -- Uhl, G R -- Snyder, S H -- New York, N.Y. -- Science. 1978 Aug 4;201(4354):467-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/351811" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; Cells, Cultured ; Cytoplasm/metabolism ; Endorphins/*metabolism ; Enkephalins/*metabolism ; Fluorescent Antibody Technique ; Ganglia, Spinal/metabolism ; Mice ; Neurons/*metabolism ; Spinal Cord/cytology/embryology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...