ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cytochrome c oxidase subunit I  (1)
  • Mitochondrial membrane  (1)
  • 1
    ISSN: 1432-0983
    Keywords: RNA splicing ; RNA maturase ; Cytochrome c oxidase subunit I ; Group II introns
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have characterized two yeast mutants deficient in the splicing of transcripts of the mitochondrial gene for cytochrome c oxidase subunit I (coxI). Both map to the first intron (aI1). RNA blot analysis shows that in addition to a reduced (mutant M15-190) or blocked (mutant M12-193) excision of the mutated intron aI1, the mutants are unable to excise the adjacent aI2 intron, the reading frame of which displays an amino acid sequence similarity to all. Splicing of the downstream introns is not affected, however. Sequence analysis of the first mutant DNA (M12-193) reveals a premature termination of the intron-encoded open reading frame, followed by two alterations at a short distance downstream. The other (M15-190) contains 11 separate changes. Although these occur in the intron reading frame, their main effect on RNA splicing may be exerted through the disturbance of intron secondary structure proposed for the 5′ end of several group II introns. The implications of these findings in relation to maturase function and structure of intron aI1 are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Key words Multi-copy suppression ; Mitochondrial membrane ; Metalloprotease ; S. cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The AFG3 gene of Saccharomyces cerevisiae encodes a mitochondrial inner membrane protein with ATP-dependent protease activity. To gain more insight into the function of this protein, multi-copy suppressors of an afg3-null mutation were isolated. Three genes were found that restored partial growth on non-fermentable carbon sources, all of which affect the biogenesis of respiratory competent mitochondria: PIM1(LON) encodes a matrix-localized ATP-dependent protease involved in the turnover of matrix proteins; OXA1(PET1402) encodes a putative mitochondrial inner membrane protein involved in the biogenesis of the respiratory chain; and MBA1 encodes a mitochondrial protein required for optimal respiratory growth. All three genes also suppressed a null mutation in a related gene, RCA1, as well as in the combination of afg3- and rca1-null.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...