ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Keywords: Lead ; Prostaglandin E2 ; Osteoclast-like cell formation ; Mouse bone marrow cells ; Cyclic adenosine 3′,5′-monophosphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract To examine an effect of lead (Pb) on the process of osteoclast-like cell formation from its progenitors, we used a mouse bone marrow culture system in which osteoclast-like multinucleated cells (MNCs) were formed in response to bone-resorbing agents. In a 9-day culture period, Pb dose-dependently stimulated MNC formation over the concentration range 2–10 μM, whereas at 40 μM Pb, MNC formation declined. In an 11-day culture period, MNC formation reached a maximum at 5 μM Pb and decreased with increasing concentration of Pb at 10–40 μM. Pb-stimulated MNC formation was inhibited by both indomethacin and SC19220, an antagonist of prostaglandin E2 (PGE2) receptor. Pb stimulated the production of PGE2 in marrow cell cultures, suggesting that Pb-stimulated MNC formation is dependent on the production of PGE2. 3-Isobutyl-1-methylxanthine potentiated Pb-stimulated MNC formation and 2′,5′-dideoxyadenosine, an inhibitor of adenylate cyclase, inhibited it. A calcium ionophore A23187 increased Pb-induced MNC formation and verapamil, a calcium channel blocker, depressed it. It is possible that a PGE2-induced increase in the levels of cyclic adenosine 3′,5′-monophosphate (cAMP) and calcium ions in marrow cells is involved in Pb-induced MNC formation. Pb and parathyroid hormone showed a synergistic stimulation on MNC formation. From these results, Pb is thought to induce osteoclast-like cell formation by a mechanism involving PGE2 which increases the intracellular levels of cAMP and calcium ions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...