ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cybernetics, Artificial Intelligence and Robotics  (2)
  • VLIW/superscalar architectures  (1)
  • instruction-level parallelism  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of parallel programming 28 (2000), S. 1-46 
    ISSN: 1573-7640
    Keywords: instruction-level parallelism ; software pipelining ; classical pipeline theory ; co-scheduling ; VLIW/superscalar architectures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract Instruction scheduling methods which use the concepts developed by the classical pipeline theory have been proposed for architectures involving deeply pipelined function units. These methods rely on the construction of state diagrams (or automatons) to (i) efficiently represent the complex resource usage pattern; and (ii) analyze legal initiation sequences, i.e., those which do not cause a structural hazard. In this paper, we propose a state-diagram based approach for modulo scheduling or software pipelining, an instruction scheduling method for loops. Our approach adapts the classical pipeline theory for modulo scheduling, and, hence, the resulting theory is called Modulo-Scheduled pipeline (MS-pipeline) theory. The state diagram, called the Modulo-Scheduled (MS) state diagram is helpful in identifying legal initiation or latency sequences, that improve the number of instructions initiated in a pipeline. An efficient method, called Co-scheduling, which uses the legal initiation sequences as guidelines for constructing software pipelined schedules has been proposed in this paper. However, the complexity of the constructed MS-state diagram limits the usefulness of our Co-scheduling method. Further analysis of the MS-pipeline theory, reveals that the space complexity of the MS-state diagram can be significantly reduced by identifying primary paths. We develop the underlying theory to establish that the reduced MS-state diagram consisting only of primary paths is complete; i.e., it retains all the useful information represented by the original state diagram as far as scheduling of operations is concerned. Our experiments show that the number of paths in the reduced state diagram is significantly lower—by 1 to 3 orders of magnitude—compared to the number of paths in the original state diagram. The reduction in the state diagram facilitate the Co-scheduling method to consider multiple initiations sequences, and hence obtain more efficient schedules. We call the resulting method, enhanced Co-scheduling. The enhanced Co-scheduling method produced efficient schedules when tested on a set of 1153 benchmark loops. Further the schedules produced by this method are significantly better than those produced by Huff's Slack Scheduling method, a competitive software pipelining method, in terms of both the initiation interval of the schedules and the time taken to construct them.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Space-filling curves is a popular approach based on a geometric embedding for linearizing computational meshes. We present a new O(n log n) combinatorial algorithm for constructing a self avoiding walk through a two dimensional mesh containing n triangles. We show that for hierarchical adaptive meshes, the algorithm can be locally adapted and easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the runtime partitioning and load balancing of adaptive unstructured grids.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: SIAM Parallel Processing Conference; Mar 22, 1999 - Mar 24, 1999; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the adaption phase of FE applications oil triangular meshes and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments oil EARTH-SP2, on implementation of EARTH on the IBM SP2 with different load balancing strategies that are built into the runtime system.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: 5th Symposium on Solving Irregularly Structured Problems in Parallel; Aug 09, 1998 - Aug 11, 1998; Berkeley, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...